211
Views
7
CrossRef citations to date
0
Altmetric
Original Research Article

Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: quantitative spike pattern analysis in Drosophila flight muscles

, &
Pages 125-142 | Received 30 Oct 2018, Accepted 29 Jan 2019, Published online: 13 Apr 2019

References

  • Avila-Akerberg, O., & Charcon, M. (2011). Nonrenewal spike train statistics: Causes and functional consequences on neural coding. Experimental Brain Research, 210 (3–4), 353–371. doi:10.1007/s00221-011-2553-y
  • Bacci, A., & Huguenard, J. (2006). Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron, 49, 119–130. doi:10.1016/j.neuron.2005.12.014
  • Benzer, S. (1971). From the gene to behavior. JAMA, 218, 1015–1022. doi:10.1001/jama.1971.03190200047010
  • Brembs, B., Christiansen, F., Pfluger, H., & Duch, C. (2007). Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. Journal of Neuroscience, 27, 11122–11131. doi:10.1523/JNEUROSCI.2704-07.2007
  • Brennan, M., Palaniswami, M., & Kamen, P. (2001). Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Transactions on Biomedical Engineering, 48, 1342–1347. doi:10.1109/10.959330
  • Card, G., & Dickinson, M. (2008). Visually mediated motor planning in the escape response of Drosophila. Current Biology, 18, 1300–1307. doi:10.1016/j.cub.2008.07.094
  • Chen, L., Durkin, K., & Casida, J. (2006). Structural model for gama-aminobutyric acid receptor noncompetitive anatagonist binding: Widely diverse structures fit the same site. Proceedings of the National Academy of Sciences of the United States of America, 103, 5185–5190. doi:10.1073/pnas.0600370103
  • Chen, X., Green, P., & Levine, J. (2011). Stress enhances muscle nociceptor activity in the rat. Neuroscience, 185, 166–173. doi:10.1016/j.neuroscience.2011.04.020
  • Coggshall, J. (1978). Neurons associated with the dorsal longitudinal flight muscles of Drosophila melanogaster. Journal of Comparative Neurology, 177, 707–720. doi:10.1002/cne.901770410
  • Consuolas, C., Restifo, L., & Levine, R. (2002). Dendritic remodeling and growth of motoneurons during metamorphosis of Drosophila melanogaster. Journal of Neuroscience, 22, 4906–4917. doi:10.1523/JNEUROSCI.22-12-04906.2002
  • Crompton, D., Griffin, A., Davies, J., & Miklos, G. (1992). Analysis of a cDNA from the neurologically active locus of shaking-B (Passover) of Drosophila melanogaster. Gene, 122, 385–386. doi:10.1016/0378-1119(92)90233-F
  • Curtsinger, J., & Laurie-Ahlberg, C. (1981). Genetic variability of flight matabolizm in Drosophila melanogaster. I. Characterization of power output during tethered flight. Genetics, 98, 549–564.
  • Dickinson, M., & Tu, M. (1997). The function of dipteran flight muscle. Comparative Biochemistry and Physiology Part A: Physiology, 116, 223–238. doi:10.1016/S0300-9629(96)00162-4
  • Ehaideb, S., Iyengar, A., Ueda, A., Iacobucci, G., Cranston, C., Bassuk, A., … Manak, J. (2014). Prickle modulates microdubule polarity and axonal transport to ameliorate seizures in flies. Proceedings of the National Academy of Sciences of the United States of America, 111, 11187–11192. doi:10.1073/pnas.1403357111
  • Elkins, T., & Ganetzky, B. (1988). The roles of potassium currents in Drosophila flight muscles. Journal of Neuroscience, 8, 428–434. doi:10.1523/JNEUROSCI.08-02-00428.1988
  • Elkins, T., Ganetzky, B., & Wu, C.F. (1986). A Drosophila mutation that eliminates a calcium-dependent potassium current. Proceedings of the National Academy of Sciences of the United States of America, 83, 8415–8419. doi:10.1073/pnas.83.21.8415
  • Engel, J., & Wu, C.F. (1992). Interactions of membrane excitability mutations affect potassium and sodium currents in the flight and giant fiber escape systems of Drosophila. Journal of Comparative Physiology A, 171, 93–104.
  • Engel, J., & Wu, C.F. (1996). Altered habituation of an identified escape circuit in Drosophila memory mutants. Journal of Neuroscience, 16, 3486–3499. doi:10.1523/JNEUROSCI.16-10-03486.1996
  • Engel, J., & Wu, C.F. (1998). Genetic dissection of functional contributions of specific potassium channel subunits in habituation of an escape circuit in Drosophila. Journal of Neuroscience, 18, 2254–2267. doi:10.1523/JNEUROSCI.18-06-02254.1998
  • Engel, J., Xie, X., Sokolowski, M., & Wu, C.F. (2000). A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant fiber escape circuit in Drosophil. Learning and Memory, 7, 341–352. doi:10.1101/lm.31600
  • Ewing, A. (1977). The neuromuscular basis of courtship song in Drosophila: The role of the indirect flight muscles. Journal of Comparative Physiology, 119, 249–265. doi:10.1007/BF00656637
  • Fergestad, T., Bostwick, B., & Ganetzky, B. (2006). Metabolic disruption in Drosophila bang-sensitive seizure mutants. Genetics, 173, 1357–1364. doi:10.1534/genetics.106.057463
  • Fernandes, J., & VijayRaghavan, K. (1993). The development of indirect flight muscle innervation in Drosophila melanogaster. Development, 118, 215–227.
  • Ffrench-Constant, R., Mortlock, D., Shaffer, C., MacIntyre, R., & Roush, R. (1991). Molecular cloning and transformation of cyclodiene resistance in Drosophila: An invertibrate gamma-aminobutyric acid subtype A receptor locus. Proceedings of the National Academy of Sciences of the United States of America, 88, 7209–7213. doi:10.1073/pnas.88.16.7209
  • Ffrench-Constant, R., Williamson, M., Davies, T., & Bass, C. (2016). Ion channels as insecticide targets. Journal of Neurogenetics, 30, 163–177. doi:10.1080/01677063.2016.1229781
  • Frankel, A., & Brosseau, G. (1968). Drosophila medium that does not require dried yeast. Drosophila Information Service, 43, 184.
  • Ganetzky, B., Wu, C.-F. (1982). Indirect suppression involving behavioral mutants iwht altered nerve excitability in Drosophila melanogaster. Genetics 100(4), 597–614.
  • Geier, S., Bancaud, J., Talairach, J., Bonis, A., Enjelvin, M., & Hossard-Bouchaud, H. (1976). Automatisms during frontal lobe epileptic seizures. Brain, 99, 447–458. doi:10.1093/brain/99.3.447
  • Ghezzi, A., Pohl, J., Wang, Y., & Atkinson, N. (2010). BK channels play a counter-adaptive role in drug tolerance and dependence. Proceedings of the National Academy of Sciences of the United States of America, 107, 16360–16365. doi:10.1073/pnas.1005439107
  • Giachello, C., & Baines, R. (2015). Inappropriate neural activity during a sensitive period in embryogenesis results in persistent seizure-like behavior. Current Biology, 25, 2964–2968. doi:10.1016/j.cub.2015.09.040
  • Goldberger, A., Rigney, D., & West, B. (1990). Chaos and fractals in human physiology. Scientific American, 262, 42–49. doi:10.1038/scientificamerican0290-42
  • Gorczyca, M., & Hall, J. (1984). Identification of a cholinergic synapse in the giant fiber pathway of Drosophila using conditional mutations of acetylcholine synthesis. Journal of Neurogenetics, 1, 289–313. doi:10.3109/01677068409107093
  • Gordon, S., & Dickinson, M. (2006). Role of calcium in the regulation of mechanical power in insect flight. Proceedings of the National Academy of Sciences of the United States of America, 103, 4311–4315. doi:10.1073/pnas.0510109103
  • Greenspan, R., Finn, J., & Hall, J. (1980). Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. Journal of Comparative Neurology, 189, 741–744. doi:10.1002/cne.901890409
  • Grigliatti, T., Hall, L., Rosenbluth, R., Suzuki, D. (1973). Temperature-sensitive mutations in Drosophila melanogaster. Mol. Gen. Genet. 120(2), 107–114. doi:10.1007/BF00267238
  • Harcombe, E., & Wyman, R. (1977). Output pattern generation by Drosophila flight motoneurons. Journal of Neurophysiology, 40, 1066–1077. doi:10.1152/jn.1977.40.5.1066
  • Harris, R., Pfeiffer, B., Rubin, G., Truman, J. (2015). Neuronal hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife. 4 e03393. doi:10.7554/eLife.04493.
  • Hebbar, S., & Fernandes, J. (2004). Pruning of motor neuron branches establishes the DLM innervation pattern in Drosophila. Journal of Neurobiology, 60, 499–516. doi:10.1002/neu.20031
  • Hekmat-Scafe, D., Lundy, M., Ranga, R., & Tanouye, M. (2006). Mutations in the K+/Cl- cotransporter gene kazachoc (kcc) increase seizure susceptibility in Drosophila. Journal of Neuroscience, 26, 8943–8954. doi:10.1523/JNEUROSCI.4998-05.2006
  • Herrera-Valdez, M.A., McKiernan, E.C., Berger, S.D., Ryglewski, S., Duch, C., & Crook, S. (2013). Relating ion channel expression, bifurcation structure and diverse firing patterns in a model of an identified motor neuron. Journal of Computational Neuroscience, 34, 211–229. doi:10.1007/s10827-012-0416-6
  • Holt, G., Softky, W., Koch, C., & Douglas, R. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neurophysiology, 75, 1806–1814. doi:10.1152/jn.1996.75.5.1806
  • Homyk, T., Grigliatti, T. (1983). Behavorial mutants of Drosophila melanogaster. IV. Analysis of developmentally temperature-sensitive mutations affecting flight. Dev. Genet. 4(2) 77–97. doi:10.1002/dvg.1020040204
  • Homyk, T., Szidonya, J., & Suzuki, D. (1980). Behavioral mutants of Drosophila melanogaster. III. Isolation and mapping of mutations by direct visual observations of behavioral phenotypes. Molecular and General Genetics (MGG), 177, 553–565. doi:10.1007/BF00272663
  • Howlett, I., & Tanouye, M. (2013). Seizure-sensitivity in Drosophila is ameliorated by dorsal vessel injection of the antiepileptic drug valproate. Journal of Neurogenetics, 27, 143–150. doi:10.3109/01677063.2013.817574
  • Huikuri, H.V., Ma¨Kikallio, T.H., Peng, C.K., Goldberger, A.L., Hintze, U., & Møller, M. (2000). Fractal correlation properties of RR interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation, 101, 47–53. doi:10.1161/01.CIR.101.1.47
  • Ikeda, K., & Koenig, J. (1988). Morphological identification of the motor neurons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster. Journal of Comparative Neurology A, 273, 436–444. doi:10.1002/cne.902730312
  • Iyengar, A., & Wu, C.F. (2014). Flight and seizure motor patterns in Drosophila mutants: Simultaneous acoustic and electrophysiological recordings of wing beats and flight muscle activity. Journal of Neurogenetics, 28, 316–328. doi:10.3109/01677063.2014.957827
  • Jackson, F., Wilson, S., Strichartz, G., Hall, L. (1984). Two types of mutants affecting voltage-sensitive sodium channels in Drosophila melanogaster. Nature 308(5955), 189–191. doi:10.1038/308189a0
  • Jasper, H. (1964). Some physiological mechanisms involved in epileptic automatisms. Epilepsia, 5, 1–20. doi:10.1111/j.1528-1157.1964.tb04341.x
  • Judd, B., Shen, M., & Kaufman, T. (1972). The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics, 71, 139–156.
  • Kadas, D., Tzortzopoulos, A., Skoulakis, E.M.C., & Consoulas, C. (2012). Constitutive activation of Ca2+/calmodulain dependent protein kinase II during development impairs central cholinergic transmission in a circuit underlying escape behavior in Drosophila. Journal of Neuroscience, 32, 170–182. doi:10.1523/JNEUROSCI.6583-10.2012
  • Kaplan, W., & Trout, W. (1969). The behavior of four neurological mutants of Drosophila. The Genetics, 61, 399–409.
  • Kawasaki, F., Felling, R., & Ordway, R. (2000). A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. Journal of Neuroscience, 20, 4885–4889. doi:10.1523/JNEUROSCI.20-13-04885.2000
  • King, D., & Wyman, R. (1980). Anatomy of the giant fiber pathway in Drosophila. I. Three thoracic components of the pathway. Journal of Neuroscience, 9, 753–770. doi:10.1007/BF01205017
  • Knight, B. (1972). Dynamics of encoding in a population of neurons. The Journal of General Physiolog, 59, 734–766. doi:10.1085/jgp.59.6.734
  • Koenig, J., & Ikeda, K. (1980). Neural interactions controlling timing of flight muscle activity in Drosophila. Journal of Experimental Biology, 87, 121–136.
  • Kuebler, D., & Tanouye, M. (2000). Modifications of seizure susceptibility in Drosophila. Journal of Neurophysiology, 83, 998–1009. doi:10.1152/jn.2000.83.2.998
  • Kuebler, D., Zhang, H., Ren, X., & Tanouye, M. (2001). Genetic suppression of seizure susceptibility in Drosophila. Journal of Neurophysiology, 86, 1211–1225. doi:10.1152/jn.2001.86.3.1211
  • Lansky, P., Rodriguez, R., & Sacerdote, L. (2004). Mean instantaneous firing frequency is always higher than the firing rate. Neural Computation, 16, 477–489. doi:10.1162/089976604772744875
  • Lee, D., Su, H., & O’Dowd, D.K. (2003). GABA receptors containing Rdl subunits mediate fast inhibitory synaptic transmission in Drosophila neurons. Journal of Neuroscience, 23, 4625–4634. doi:10.1523/JNEUROSCI.23-11-04625.2003
  • Lee, J., & Wu, C.F. (2002). Electroconvulsive seizure behavior in Drosophila: Analysis of the physiological repertoire underlying a stereotyped action pattern in bang-sensitive mutants. Journal of Neuroscience, 22, 11065–11079. doi:10.1523/JNEUROSCI.22-24-11065.2002
  • Lee, J., & Wu, C.F. (2006). Genetic modifications of seizure susceptivility and expression by altered excitability in Drosophila Na.+ and K.+ channel mutants. Journal of Neurophysiology, 96, 2465–2478. doi:10.1152/jn.00499.2006
  • Lehman, F.O., Skandalis, D., & Berthe, R. (2013). Calcium signalling indicates bilateral power balancing in the Drosophila fligth muscle during manoeuvring flight. Journal of the Royal Society Interface, 10, 1050.
  • Lehmann, F.O., & Dickinson, M. (1997). The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 200, 1133–1143.
  • Levine, J., & Wyman, R. (1973). Neurophysiology of flight in wild-type and a mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 70, 1050–1054. doi:10.1073/pnas.70.4.1050
  • Lindsley, D., & Zimm, G. (1992). The genome of Drosophila. San Diego, CA: Academic Press.
  • Liu, W., & Wilson, R. (2013). Glutamate is an inhibitor neurotransmitter in the Drosophila olfactory system. Proceedings of the National Academy of Sciences of the United States of America, 110, 10294–10299. doi:10.1073/pnas.1220560110
  • Longtin, A. (1993). Stochastic resonance in neuron models. Journal of Statistical Physics, 70, 309–327. doi:10.1007/BF01053970
  • Löscher, W., Schmidt, D. (1988). Which animal models should be used in the search for new antiepileptic drugs? A proposal based on experimental and clinical considerations. Epilepsy res., 2(3), 145–181. doi:10.1016/0920-1211(88)90054-X
  • Loughney, K., Kreber, R., & Ganetzky, B. (1989). Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell, 58, 1143–1154. doi:10.1016/0092-8674(89)90512-6
  • Luttjohann, A., Fabene, P., & van Luijtelaar, G. (2009). A revised Racine’s scale for PTZ-induced seizures in rats. Physiology & Behavior, 98, 579–586. doi:10.1016/j.physbeh.2009.09.005
  • Marley, R., & Baines, R. (2011). Increased persistent Na + current contributes to seizure in the slamdance bang-sensitive Drosophila mutant. Journal of Neurophysiology, 106, 18–29. doi:10.1152/jn.00808.2010
  • Melom, J., & Littleton, J. (2013). Mutation of a NCKX eliminates glial microdomain calcium oscillations and enhances seizure susceptibility. Journal of Neuroscience, 33, 1169–1178. doi:10.1523/JNEUROSCI.3920-12.2013
  • Melzig, J., Buchner, S., Wiebel, F., Wolf, R., Buchner, E., Burg, M., & Pak, W. (1996). Genetic depletion of histamine from the nervous system of Drosophila eliminates specific visual and mechanosensory behavior. Journal of Comparative Physiology A, 176, 763–773.
  • Miller, A. (1950). The internal anatomy and histology of the imago of Drosophila melanogaster. In M. Demerec (Ed.), Biology of drosophila (pp. 420–524). Plainview, NY: Cold Spring Harbor Press.
  • Miller, T. (1985). Structure and physiology of the circulatory system. In G. Kerkut, & L. Gilbert (Eds.), Comprehensive insect physiology, biochemistry and pharmacology integument, respiration and circulation (1 ed., Vol. 3, pp. 290–349). Oxford, UK: Pergamon Press.
  • Mu, L., Bacon, J., Ito, K., & Strausfeld, N. (2014). Responses of Drosophila giant descending neurons to visual and mechanical stimuli. Journal of Experimental Biology, 217, 2121–2129. doi:10.1242/jeb.099135
  • Noachtar, S., & Peters, A. (2009). Semiology of epileptic seizures: A critical review. Epilepsy & Behavior, 15, 2–9. doi:10.1016/j.yebeh.2009.02.029
  • Palladino, M., Bower, J., Kreber, R., & Ganetzky, B. (2003). Neural dysfunction and neurodegeneration in Drosophila Na+/K + ATPase alpha subunit mutants. Journal of Neuroscience, 23, 1276–1286. doi:10.1523/JNEUROSCI.23-04-01276.2003
  • Parker, L., Padilla, M., Du, Y., Dong, K., & Tanouye, M. (2011). Drosophila as a model for epilepsy: Bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics, 187, 523–534. doi:10.1534/genetics.110.123299
  • Pavlidis, P., & Tanouye, M. (1995). Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. Journal of Neuroscience, 15, 5810–5819. doi:10.1523/JNEUROSCI.15-08-05810.1995
  • Phelan, P., Nakagawa, M., Wilkin, M., Moffat, K., O’Kane, C., Davies, J., & Bacon, J. (1996). Mutations in shaking-B prevent electrical synapse formation in the Drosophila giant fiber system. Journal of Neuroscience, 16, 1101–1113. doi:10.1523/JNEUROSCI.16-03-01101.1996
  • Phelan, P., Stebbings, L., Baines, R., Bacon, J., Davies, J., & Ford, C. (1998). Drosophila Shaking-B protein forms gap junction s in paired Xenopus oocytes. Nature, 391, 181–184. doi:10.1038/34426
  • Phillis, R.B., Wotus, C., Whittaker, A., Gramates, L., Seppala, D., Farahanchi, F., … Murphey, R. (1993). Isolation of mutations affecting neural circuitry required for grooming behavior in Drosophila. Genetics, 133, 581–593.
  • Racine, R. (1972). Modification of seizure activity by electrical stimulation: II Motor seizure. Electroencephalography and Clinical Neurophysiology, 32, 281–294. doi:10.1016/0013-4694(72)90177-0
  • Roeder, K. (1935). An experimental analysis of the sexual behavior of the praying mantis (Mantis religiosa L.). The Biological Bulletin, 69, 203–220. doi:10.2307/1537420
  • Royden, C., Pirrotta, V., & Jan, L. (1987). The tko locus, site of a behavioral mutation in D. melanogaster, codes for a protein homologous to prokaryotic ribosomal protein S12. Cell, 51, 165–173. doi:10.1016/0092-8674(87)90144-9
  • Ryglewski, S., & Duch, C. (2009). Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motor neuron. Journal of Neurophsiology, 102, 3673–3688. doi:10.1152/jn.00693.2009
  • Ryglewski, S., Kilo, L., & Duch, C. (2014). Sequential acquisition of cacophony calcium currents, sodium channels, and voltage-dependent potassium currents affects spike shape and dendrite growth durin postembryonic maturation of an identified Drosophila motoneuron. The European journal of Neuroscience, 39, 1572–1585. doi:10.1111/ejn.12517
  • Ryglewski, S., Lance, K., Levine, R., & Duch, C. (2012). Cav2 channels mediate low and high voltage-activated calcium currents in Drosophila motoneuron. Journal of Physiology, 590, 809–825. doi:10.1113/jphysiol.2011.222836
  • Sadaf, S., Reddy, O., Sane, S., & Hasan, G. (2015). Neural control of wing coordination in flies. Current Biology, 25, 80–86. doi:10.1016/j.cub.2014.10.069
  • Salkoff, L., & Kelly, L. (1978). Temperature-induced seizure and frequency-dependent neuromuscular block in a ts mutant of Drosophila. Nature, 273, 156–158. doi:10.1038/273156a0
  • Salkoff, L., & Wyman, R. (1981). Outward currents in developing Drosophila flight muscle. Science, 212, 461–463. doi:10.1126/science.6259736
  • Seeds, A., Ravbar, P., Chung, P., Hampel, S., Midgley, F., Mensh, B., & Simpson, J. (2014). A suppression heirarchy among competing motor programs drives sequential grooming in Drosophila. eLife, 3, e02951. doi:10.7554/eLife.02951
  • Siddiqi, O., & Benzer, S. (1976). Neurophysiological defects in temperature sensitive paralytic mtuants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 73, 3253–3257. doi:10.1073/pnas.73.9.3253
  • Song, J., & Tanouye, M. (2006). Seizure suppression by shakB2, a gap junction mutation in Drosophila. Journal of Neurophysiology, 95, 627–635. doi:10.1152/jn.01059.2004
  • Stilwell, G., Saraswati, S., Littleton, J., & Chouinard, S. (2006). Development of a Drosophila seizure model for in vivo high-throughput drug screening. European Journal of Neuroscience, 24, 2211–2222. doi:10.1111/j.1460-9568.2006.05075.x
  • Szucs, A. (1998). Applications of the spike density function in analysis of neuronal firing patterns. Journal of Neuroscience Methods, 81, 159–167. doi:10.1016/S0165-0270(98)00033-8
  • Takeuchi, A., & Takeuchi, N. (1969). A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. The Journal of Physiology, 205, 377–391. doi:10.1113/jphysiol.1969.sp008972
  • Tanouye, M., & Wyman, R. (1980). Motor outputs of giant nerve fiber in Drosophila. Journal of Neurophysiology, 44, 405–421. doi:10.1152/jn.1980.44.2.405
  • Thomas, J., & Wyman, R. (1984). Mutations altering synaptic connectivity between identified neurons in Drosophila. Journal of Neuroscience, 4, 530–538. doi:10.1523/JNEUROSCI.04-02-00530.1984
  • Titus, S.A., Warmke, J.W., & Ganetzky, B. (1997). The Drosophila erg K + channel polypeptide is encoded by the seizure locus. Journal of Neuroscience, 17, 875–881. doi:10.1523/JNEUROSCI.17-03-00875
  • Trimarchi, J., & Schneiderman, A. (1995). Flight initiations in Drosophila melanogaster are mediated by several distinct motor patterns. Journal of Comparative Physiology A, 3, 355–364.
  • Trotta, N., Rodesch, C., Fergestad, T., & Broadie, K. (2004). Cellular bases of activity-dependent paralysis in Drosophila stress-sensitive mutants. Journal of Neurobiology, 60, 328–347. doi:10.1002/neu.20017
  • von Reyn, C.R., Breads, P., Peek, M.Y., Zheng, G.Z., Williamson, W.R., Yee, A.L., … Card, G.M. (2014). A spike-timing mechanism for action selection. Nature Neuroscience, 17, 962–970. doi:10.1038/nn.3741
  • Wang, C.T., Zhang, H.G., Rocheleau, T.A., Ffrench-Constant, R.H., & Jackson, M.B. (1999). Cation permeability and cation-anion interactions in a mutant GABA-gated chloride channel from Drosophila. Biophysical Journal, 77, 691–700. doi:10.1016/S0006-3495(99)76924-9
  • Werner, G., & Mountcastle, V. (1963). The variability of central neural activity in a sensory system, and its implications for the central reflection of sensory events. Journal of Neurophysiology, 26, 958–977. doi:10.1152/jn.1963.26.6.958
  • Williamson, R. (1982). Lithium stops hereditary shuddering in Drosophila melanogaster. Psychopharmacology, 76, 265–268. doi:10.1007/BF00432558
  • Wyman, R. (1965). Probabilistic characterization of simultaneous nerve impulse sequences controlling dipteran flight. Biophysical Journal, 5, 447–471. doi:10.1016/S0006-3495(65)86729-7
  • Yellman, C., Tao, H., He, B., & Hirsh, J. (1997). Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 94, 4131–4136. doi:10.1073/pnas.94.8.4131
  • Zhang, H.G., Ffrench-Constant, R.H., & Jackson, M.B. (1994). A unique amino acid of the Drosophila GABA receptor with influence on drug sensitivity by two mechanisms. Journal of Physiology, 479, 65–75. doi:10.1113/jphysiol.1994.sp020278
  • Zhang, Y., Roote, J., Brogna, S., Davis, A., Barbash, D., Nash, D., & Ashburner, M. (1999). stress sensitive B encodes an adenine nucleotide translocase in Drosophila melanogaster. Genetics, 153, 891–903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.