1,022
Views
45
CrossRef citations to date
0
Altmetric
Review Article

A short guide to insect oviposition: when, where and how to lay an egg

, &
Pages 75-89 | Received 01 Nov 2018, Accepted 20 Feb 2019, Published online: 04 Jun 2019

References

  • Acebes, A., Cobb, M., & Ferveur, J.F. (2003). Species-specific effects of single sensillum ablation on mating position in Drosophila. The Journal of Experimental Biology, 206, 3095–3100. doi:10.1242/jeb.00522
  • Adolph, E.F. (1920). Egg-laying reactions in the pomace fly, Drosophila. Journal of Experimental Zoology, 31, 326–341. doi:10.1002/jez.1400310303
  • Ahmed, T., Zhang, T-t., He, K-l., Bai, S-x., & Wang, Z-y. (2013). Sense organs on the ovipositor of Macrocentrus cingulum Brischke (Hymenoptera: Braconidae): Their probable role in stinging, oviposition and host selection process. Journal of Asia-Pacific Entomology, 16, 343–348. doi:10.1016/j.aspen.2013.04.015
  • Allemand, R. (1974). Importance évolutive du comportement de ponte chez les insectes: Comparaison du rythme circadien d'oviposition chez les six espèces de Drosophila du sous-groupe melanogaster. Comptes Rendus Hebdomadaires Des Séances de L'Académie Des Sciences. Série D, 279, 2075–2077.
  • Allemand, R. (1976a). Les rythmes de vitellogenèse et d'ovulation en photoperiode LD 12:12 de Drosophila melanogaster. Journal of Insect Physiology, 22, 1031–1035. doi:10.1016/0022-1910(76)90088-3
  • Allemand, R. (1976b). Influence of light condition modification on the circadian rhythm of vitellogenesis and ovulation in Drosophila melanogaster. Journal of Insect Physiology, 22, 1075–1080. doi:10.1016/0022-1910(76)90116-5
  • Allemand, R. (1976c). Importance adaptative du rythme circadien de ponte chez les drosophilidés: Comparaison de huit espèces du genre Zaprionus. Comptes Rendus Hebdomadaires Des Séances de L'Académie Des Sciences. Série D, 282, 85–88.
  • Allemand, R. (1977). Influence de l'intensité d'éclairement sur l'expression du rythme journalier d'oviposition de Drosophila melanogaster en condtions lumineuses. Comptes Rendus Hebdomadaires Des Séances de L'Académie Des Sciences. Série D, 284, 1553–1556.
  • Ameku, T., & Niwa, R. (2016). Mating-induced increase in germline stem cells via the neuroendocrine system in female Drosophila. PLoS Genetics, 12, e1006123. doi:10.1371/journal.pgen.1006123
  • Arthur, B.I., Jr., Jallon, J.M., Caflisch, B., Choffat, Y., & Nothiger, R. (1998). Sexual behaviour in Drosophila is irreversibly programmed during a critical period. Current Biology, 8, 1187–1190. doi:10.1016/S0960-9822(07)00491-5
  • Ashburner, M. (1978). The genetics and biology of Drosophila, M. Ashburner and T.R.F. Wright (Eds.). Vol. 2b.
  • Ayali, A., & Lange, A.B. (2010). Rhythmic behaviour and pattern-generating circuits in the locust: Key concepts and recent updates. Journal of Insect Physiology, 56, 834–843. doi:10.1016/j.jinsphys.2010.03.015
  • Azanchi, R., Kaun, K.R., & Heberlein, U. (2013). Competing dopamine neurons drive oviposition choice for ethanol in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 110, 21153–21158. doi:10.1073/pnas.1320208110
  • Baur, R., Haribal, M., Renwick, J.A.A., & Stadler, E. (1998). Contact chemoreception related to host selection and oviposition behaviour in the monarch butterfly, Danaus plexippus. Physiological Entomology, 23, 7–19. doi:10.1046/j.1365-3032.1998.2310007.x
  • Becher, P.G., Flick, G., Rozpędowska, E., Schmidt, A., Hagman, A., Lebreton, S., … Bengtsson, M. (2012). Yeast, not fruit volatiles mediate Drosophila melanogaster attraction, oviposition and development. Functional Ecology, 26, 822–828. doi:10.1111/j.1365-2435.2012.02006.x
  • Beehler, J., Lohr, S., & DeFoliart, G. (1992). Factors influencing oviposition in Aedes triseriatus (Diptera: Culicidae). The Great Lakes Entomologist, 25, 259–264.
  • Belanger, J.H., & Orchard, I. (1992). The role of sensory input in maintaining output from the locust oviposition digging central pattern generator. Journal of Comparative Physiology A, 171, 495–503.
  • Bisch-Knaden, S., Dahake, A., Sachse, S., Knaden, M., & Hansson, B.S. (2018). Spatial representation of feeding and oviposition odors in the brain of a Hawkmoth. Cell Reports, 22, 2482–2492. doi:10.1016/j.celrep.2018.01.082
  • Bono, J.M., Matzkin, L.M., Kelleher, E.S., & Markow, T.A. (2011). Postmating transcriptional changes in reproductive tracts of con- and heterospecifically mated Drosophila mojavensis females. Proceedings of the National Academy of Sciences of the United States of America, 108, 7878–7883. doi:10.1073/pnas.1100388108
  • Brady, J. (1974). The physiology of insect circadian rhythms. Advances in Insect Physiology, 10, 1–115. https://doi.org/10.1016/S0065-2806(08)60129-0.
  • Brieger, G., & Butterworth, F.M. (1970). Drosophila melanogaster: Identity of male lipid in reproductive system. Science, 167, 1262. doi:10.1126/science.167.3922.1262
  • Briscoe, A.D., Macias-Muñoz, A., Kozak, K.M., Walters, J.R., Yuan, F., Jamie, G.A., … Jiggins, C.D. (2013). Female behaviour drives expression and evolution of gustatory receptors in butterflies. PLoS Genetics, 9, e1003620. doi:10.1371/journal.pgen.1003620
  • Carreira-Rosario, A., Zarin, A.A., Clark, M.Q., Manning, L., Fetter, R.D., Cardona, A., & Doe, C.Q. (2018). MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. Elife, 7, e38554 doi:10.7554/eLife.38554.
  • Carson, H.L., & Kaneshiro, K.Y. (1976). Drosophila of Hawaii: Systematics and ecological genetics. Annual Review of Ecology and Systematics, 7, 311–345. doi:10.1146/annurev.es.07.110176.001523
  • Carvalho, G.B., Kapahi, P., Anderson, D.J., & Benzer, S. (2006). Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Current Biology, 16, 692–696. doi:10.1016/j.cub.2006.02.064
  • Chen, P.S., Stumm-Zollinger, E., Aigaki, T., Balmer, J., Bienz, M., & Bohlen, P. (1988). A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell, 54, 291–298. doi:10.1016/0092-8674(88)90192-4
  • Chen, Y., & Amrein, H. (2017). Ionotropic receptors mediate drosophila oviposition preference through sour gustatory receptor neurons. Current Biology, 27, 2741–2750.e4. doi:10.1016/j.cub.2017.08.003
  • Chin, S.G., Maguire, S.E., Huoviala, P., Jefferis, G., & Potter, C.J. (2018). Olfactory neurons and brain centers directing oviposition decisions in Drosophila. Cell Reports, 24, 1667–1678. doi:10.1016/j.celrep.2018.07.018
  • Clark, J., & Lange, A.B. (2001). Evidence of a neural loop involved in controlling spermathecal contractions in Locusta migratoria. Journal of Insect Physiology, 47, 607–616. doi:10.1016/S0022-1910(00)00149-9
  • Del Solar, E., Guijón, A.M., & Walker, L. (1974). Choice of colored substrates for oviposition in Drosophila melanogaster. Bolletino de Zoologia, 41, 253–260. doi:10.1080/11250007409430120
  • Delbare, S.Y.N., Chow, C.Y., Wolfner, M.F., & Clark, A.G. (2017). Roles of female and male genotype in post-mating responses in Drosophila melanogaster. Journal of Heredity, 108, 740–753. doi:10.1093/jhered/esx081
  • Delisle, J., Picimbon, J., & Simard, J. (2000). Regulation of pheromone inhibition in mated females of Choristoneura fumiferana and C. rosaceana. Journal of Insect Physiology, 46, 913–921. doi:10.1016/S0022-1910(99)00198-5
  • Demerec, M. (1950). Biology of Drosophila. New York: John Wiley and Sons.
  • Dombrovski, M., Poussard, L., Moalem, K., Kmecova, L., Hogan, N., Schott, E., … Condron, B. (2017). Cooperative behavior emerges among Drosophila larvae. Current Biology: CB, 27, 2821–2826.e2. doi:10.1016/j.cub.2017.07.054
  • Duménil, C., Woud, D., Pinto, F., Alkema, J.T., Jansen, I., Van Der Geest, A.M., … Billeter, J.-C. (2016). Pheromonal cues deposited by mated females convey social information about egg-laying sites in Drosophila melanogaster. Journal of Chemical Ecology, 42, 259–269. doi:10.1007/s10886-016-0681-3
  • Dweck, H.K.M., Ebrahim, S.A.M., Farhan, A., Hansson, B.S., & Stensmyr, M.C. (2015). Olfactory proxy detection of dietary antioxidants in Drosophila. Current Biology, 25, 455–466. doi:10.1016/j.cub.2014.11.062
  • Dweck, H.K.M., Ebrahim, S.A.M., Kromann, S., Bown, D., Hillbur, Y., Sachse, S., … Stensmyr, M.C. (2013). Olfactory preference for egg laying on citrus substrates in Drosophila. Current Biology: CB, 23, 2472–2480. doi:10.1016/j.cub.2013.10.04
  • Ebrahim, S.A., Dweck, H.K., Stokl, J., Hofferberth, J.E., Trona, F., Weniger, K., … Knaden, M. (2015). Drosophila avoids parasitoids by sensing their semiochemicals via a dedicated olfactory circuit. PLOS Biology, 13, e1002318. doi:10.1371/journal.pbio.1002318
  • Farooqui, T. (2007). Octopamine-mediated neuromodulation of insect senses. Neurochemical Research, 32, 1511–1529. doi:10.1007/s11064-007-9344-7
  • Feng, K., Palfreyman, M.T., Hasemeyer, M., Talsma, A., & Dickson, B.J. (2014). Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron, 83, 135–148. doi:10.1016/j.neuron.2014.05.017
  • Ferguson, C.T., O'Neill, T.L., Audsley, N., & Isaac, R.E. (2015). The sexually dimorphic behaviour of adult Drosophila suzukii: elevated female locomotor activity and loss of siesta is a post-mating response. The Journal of Experimental Biology, 218, 3855–3861. doi:10.1242/jeb.125468
  • Findlay, G.D., Yi, X., Maccoss, M.J., & Swanson, W.J. (2008). Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLOS Biology, 6, e178. doi:10.1371/journal.pbio.0060178
  • Gabrieli, P., Kakani, E.G., Mitchell, S.N., Mameli, E., Want, E.J., Mariezcurrena Anton, A., … Catteruccia, F. (2014). Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 111, 16353–16358. doi:10.1073/pnas.1410488111
  • Gillott, C. (2003). Male accessory gland secretions: Modulators of female reproductive physiology and behavior. Annual Review of Entomology, 48, 163–184. doi:10.1146/annurev.ento.48.091801.112657
  • Glaser, N., Gallot, A., Legeai, F., Montagné, N., Poivet, E., Harry, M., … Jacquin-Joly, E. (2013). Candidate chemosensory genes in the stemborer Sesamia nonagrioides. International Journal of Biological Sciences, 9, 481–495. doi:10.7150/ijbs.6109
  • Gomulski, L.M., Dimopoulos, G., Xi, Z., Scolari, F., Gabrieli, P., Siciliano, P., … Gasperi, G. (2012). Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS ONE, 7, e30857. doi:10.1371/journal.pone.0030857
  • Gou, B., Liu, Y., Guntur, A.R., Stern, U., & Yang, C-h. (2014). Mechanosensitive neurons on the internal reproductive tract contribute to egg-laying-induced acetic acid attraction in Drosophila. Cell Reports, 9, 522–530. doi:10.1016/j.celrep.2014.09.033
  • Grimaldi, D., & Engel, M.S. (2005). Evolution of the insects (1st ed.). New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press.
  • Grimaldi, D., Nguyen, T. (1999). Monograph on the spittlebug flies, genus Cladochaeta (Diptera, Drosophilidae, Cladochaetini). Bulletin of the American Museum of Natural History, 241, 1–326.
  • Guntur, A.R., Gou, B., Gu, P., He, R., Stern, U., Xiang, Y., & Yang, C.H. (2017). H2O2-sensitive isoforms of Drosophila melanogaster TRPA1 act in bitter-sensing gustatory neurons to promote avoidance of UV during egg-laying. Genetics, 205, 749–759. doi:10.1534/genetics.116.195172
  • Hardy, E. (1965). Series Schizophora, Section Acalypterae I, Family Drosophilidae. Honolulu (HI): University of Hawaii Press.
  • Hasemeyer, M., Yapici, N., Heberlein, U., & Dickson, B.J. (2009). Sensory neurons in the Drosophila genital tract regulate female reproductive behavior. Neuron, 61, 511–518. doi:10.1016/j.neuron.2009.01.009
  • Haverkamp, A., Hansson, B.S., & Knaden, M. (2018). Combinatorial codes and labeled lines: How insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Frontiers in Physiology, 9, 49. doi:10.3389/fphys.2018.00049
  • Heifetz, Y., Lung, O., Frongillo, E.A., Jr., & Wolfner, M.F. (2000). The Drosophila seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. Current Biology, 10, 99–102. doi:10.1016/S0960-9822(00)00288-8
  • Honda, K. (1990). Identification of host-plant chemicals stimulating oviposition by swallowtail butterfly, Papilio protenor. Journal of Chemical Ecology, 16, 325–337. doi:10.1007/BF01021768
  • Horvath, G., & Varju, D. (2004). Polarized light in animal vision: Polarization patterns in nature. Berlin (Germany): Springer Verlag.
  • Hudson, B.N.A. (1956). The behaviour of the female mosquito in selecting water for oviposition. Journal of Experimental Biology, 33, 478.
  • Huoviala, P., Dolan, M.-J., Love, F., Frechter, S., Roberts, R.J.V., Mitrevica, Z., … Jefferis, G.S.X.E. (2018). Neural circuit basis of aversive odour processing in Drosophila from sensory input to descending output. BioRxiv.
  • Hussain, A., Ucpunar, H.K., Zhang, M., Loschek, L.F., & Grunwald Kadow, I.C. (2016). Neuropeptides modulate female chemosensory processing upon mating in Drosophila. PLOS Biology, 14, e1002455. doi:10.1371/journal.pbio.1002455
  • Joseph, R.M., & Heberlein, U. (2012). Tissue-specific activation of a single gustatory receptor produces opposing behavioral responses in Drosophila. Genetics, 192, 521–532. doi:10.1534/genetics.112.142455
  • Joseph, R.M., Devineni, A.V., King, I.F., & Heberlein, U. (2009). Oviposition preference for and positional avoidance of acetic acid provide a model for competing behavioral drives in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 106, 11352–11357. doi:10.1073/pnas.0901419106
  • Kacsoh, B.Z., Bozler, J., Ramaswami, M., & Bosco, G. (2015). Social communication of predator-induced changes in Drosophila behavior and germ line physiology. eLife, 4, e07423 doi: 10.7554/eLife.07423.
  • Kacsoh, B.Z., Lynch, Z.R., Mortimer, N.T., & Schlenke, T.A. (2013). Fruit flies medicate offspring after seeing parasites. Science, 339, 947–950. doi:10.1126/science.1229625
  • Kambysellis, M.P., & Heed, W.B. (1971). Studies of oogenesis in natural populations of Drosophilidae. I. Relation of ovarian development and ecological habitats of the hawaiian species. The American Naturalist, 105, 31–49. doi:10.1086/282700
  • Karageorgi, M., Bracker, L.B., Lebreton, S., Minervino, C., Cavey, M., Siju, K.P., … Prud'homme, B. (2017). Evolution of multiple sensory systems drives novel egg-laying behavior in the fruit pest Drosophila suzukii. Current Biology, 27, 847–853. doi:10.1016/j.cub.2017.01.055
  • Kelber, A. (1999). Ovipositing butterflies use a red receptor to see green. Journal of Experimental Biology, 202, 2619–2630.
  • Kelleher, E.S., Watts, T.D., LaFlamme, B.A., Haynes, P.A., & Markow, T.A. (2009). Proteomic analysis of Drosophila mojavensis male accessory glands suggests novel classes of seminal fluid proteins. Insect Biochemistry and Molecular Biology, 39, 366–371. doi:10.1016/j.ibmb.2009.03.003
  • Kim, Y.J., Bartalska, K., Audsley, N., Yamanaka, N., Yapici, N., Lee, J.Y., … Dickson, B.J. (2010). MIPs are ancestral ligands for the sex peptide receptor. Proceedings of the National Academy of Sciences of the United States of America, 107, 6520–6525. doi:10.1073/pnas.0914764107
  • Kimura, K-i., Sato, C., Koganezawa, M., & Yamamoto, D. (2015). Drosophila ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons. PLoS ONE, 10, e0126445. doi:10.1371/journal.pone.0126445
  • Klinner C.F., König, C., Missbach, C., Werckenthin, A., Daly, K.C., Bisch-Knaden, S., Stengl, M., Hansson, B.S., and Groβe-Wilde, E. (2016). Functional olfactory sensory neurons housed in olfactory sensilla on the ovipositor of the Hawkmoth Manduca sexta. Frontiers in Ecology and Evolution, 4, 130. doi: 10.3389/fevo.2016.00130
  • Lange, A.B. (2009). Neural mechanisms coordinating the female reproductive system in the locust. Frontiers in Bioscience, 4401–4415. doi:10.2741/3536
  • Lange, A.B., & Nykamp, D.A. (1996). Signal transduction pathways regulating the contraction of an insect visceral muscle. Archives of Insect Biochemistry and Physiology, 33, 183–196. doi:10.1002/(SICI)1520-6327(1996)33:3/4<183::AID-ARCH2>3.3.CO;2-Z
  • Lange, A.B., Orchard, I., & Loughton, B.G. (1984). Neural inhibition of egg-laying in the locust, Locusta migratoria. Journal of Insect Physiology, 30, 271–278. doi:10.1016/0022-1910(84)90127-6
  • Legal, L., Moulin, B., & Jallon, J.M. (1999). The relation between structures and toxicity of oxygenated aliphatic compounds homologous to the insecticide octanoic acid and the chemotaxis of two species of Drosophila. Pesticide Biochemistry and Physiology, 65, 90–101. doi:10.1006/pest.1999.2430
  • Lenschow, M., Cordel, M., Pokorny, T., Mair, M.M., Hofferberth, J., & Ruther, J. (2018). The post-mating switch in the pheromone response of nasonia females is mediated by dopamine and can be reversed by appetitive learning. Frontiers in Behavioral Neuroscience, 12, 14. doi:10.3389/fnbeh.2018.00014
  • Lerner, A., Meltser, N., Sapir, N., Erlick, C., Shashar, N., & Broza, M. (2008). Reflected polarization guides chironomid females to oviposition sites. Journal of Experimental Biology, 211, 3536–3543. doi:10.1242/jeb.022277
  • Lin, C.-C., Prokop-Prigge, K.A., Preti, G., & Potter, C.J. (2015). Food odors trigger Drosophila males to deposit a pheromone that guides aggregation and female oviposition decisions. eLife, 4. pii: e08688. doi: 10.7554/eLife.08688
  • Linz, J., Baschwitz, A., Strutz, A., Dweck, H.K.M., Sachse, S., Hansson, B.S., & Stensmyr, M.C. (2013). Host plant-driven sensory specialization in Drosophila erecta. Proceedings of the Royal Society B: Biological Sciences, 280, 20130626. doi:10.1098/rspb.2013.0626
  • Mack, P.D., Kapelnikov, A., Heifetz, Y., & Bender, M. (2006). Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 103, 10358–10363. doi:10.1073/pnas.0604046103
  • Manjunatha, T., Hari Dass, S., & Sharma, V.K. (2008). Egg-laying rhythm in Drosophila melanogaster. Journal of Genetics, 87, 495–504. doi:10.1007/s12041-008-0072-9
  • Mansourian, S., & Stensmyr, M.C. (2015). The chemical ecology of the fly. Current Opinion in Neurobiology, 34, 95–102. doi:10.1016/j.conb.2015.02.006
  • Mansourian, S., Corcoran, J., Enjin, A., Löfstedt, C., Dacke, M., & Stensmyr, M.C. (2016). Fecal-derived phenol induces egg-laying aversion in Drosophila. Current Biology, 26, 2762–2769. doi:10.1016/j.cub.2016.07.065
  • Marder, E., Bucher, D., Schulz, D.J., & Taylor, A.L. (2005). Invertebrate central pattern generation moves along. Current Biology, 15, R685–R699. doi:10.1016/j.cub.2005.08.022
  • Marin, E.C., Jefferis, G.S.X.E., Komiyama, T., Zhu, H., & Luo, L. (2002). Representation of the glomerular olfactory map in the Drosophila brain. Cell, 109, 243–255. doi:10.1016/S0092-8674(02)00700-6
  • Markow, T.A., & O'Grady, P.M. (2005). Drosophila – A guide to species identification and use. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, Sand Diego, San Francisco, Singapore, Sidney, Tokyo: Academic Press.
  • Masse, N.Y., Turner, G.C., & Jefferis, G.S.X.E. (2009). Olfactory information processing in Drosophila. Current Biology: CB, 19, R700–R713. doi:10.1016/j.cub.2009.06.026
  • Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., & Fuyama, Y. (2007). Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biology, 5, e118. doi:10.1371/journal.pbio.0050118
  • Matthews, B.J., Younger, M.A., & Vosshall, L.B. (2018). The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti. BioRxiv.
  • McCrae, A.W. (1984). Oviposition by African malaria vector mosquitoes. II. Effects of site tone, water type and conspecific immatures on target selection by freshwater Anopheles gambiae Giles, Sensu Lato. Annals of Tropical Medicine and Parasitology, 78, 307–318. doi:10.1080/00034983.1984.11811821
  • McGraw, L.A., Clark, A.G., & Wolfner, M.F. (2008). Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins. Genetics, 179, 1395–1408. doi:10.1534/genetics.108.086934
  • Mechaber, W.L., & Hildebrand, J.G. (2000). Novel, non-solanaceous hostplant record for Manduca sexta (Lepidoptera: Sphingidae) in the Southwestern United States. Annals of the Entomological Society of America 93, 93, 447–451. doi:10.1603/0013-8746(2000)093[0447:NNSHRF]2.0.CO;2
  • Middleton, C.A., Nongthomba, U., Parry, K., Sweeney, S.T., Sparrow, J.C., & Elliott, C.J.H. (2006). Neuromuscular organization and aminergic modulation of contractions in the Drosophila ovary. BMC Biology, 4, 17. doi:10.1186/1741-7007-4-17
  • Miller, P.M., Saltz, J.B., Cochrane, V.A., Marcinkowski, C.M., Mobin, R., & Turner, T.L. (2011). Natural variation in decision-making behavior in Drosophila melanogaster. PLoS One, 6, e16436. doi:10.1371/journal.pone.0016436
  • Monastirioti, M. (2003). Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Developmental Biology, 264, 38–49. doi:10.1016/j.ydbio.2003.07.019
  • Murakami, T. (2003). Studies on the relationships between host-plant acceptability and plant constituents in host selection by a swallowtail butterfly, Papilio polytes. Journal of the Graduate School of Biosphere Science, Hiroshima University 42, 58–59.
  • Niven, J.E., Graham, C.M., & Burrows, M. (2008). Diversity and evolution of the insect ventral nerve cord. Annual Review of Entomology, 53, 253–271. doi:10.1146/annurev.ento.52.110405.091322
  • Nykamp, D.A., & Lange, A.B. (2000). Interaction between octopamine and proctolin on the oviducts of Locusta migratoria. Journal of Insect Physiology, 46, 809–816. doi:10.1016/S0022-1910(99)00170-5
  • Ohsugi, T., Nishida, R., & Fukami, H. (1991). Multi-component system of oviposition stimulants for a Rutaceae-feeding swallowtail butterfly, Papilio xuthus (Lepidoptera: Papilionidae). Applied Entomology and Zoology, 26, 29–40. doi:10.1303/aez.26.29
  • Ozaki, K., Ryuda, M., Yamada, A., Utoguchi, A., Ishimoto, H., Calas, D., … Yoshikawa, H. (2011). A gustatory receptor involved in host plant recognition for oviposition of a swallowtail butterfly. Nature Communications, 2, 542. doi:10.1038/ncomms1548
  • Peng, J., Chen, S., Busser, S., Liu, H., Honegger, T., & Kubli, E. (2005). Gradual release of sperm bound sex-peptide controls female postmating behavior in Drosophila. Current Biology, 15, 207–213. doi:10.1016/j.cub.2005.01.034
  • Prieto-Godino, L.L., Rytz, R., Cruchet, S., Bargeton, B., Abuin, L., Silbering, A.F., … Benton, R. (2017). Evolution of acid-sensing olfactory circuits in Drosophilids. Neuron, 93, 661–676.e666. doi:10.1016/j.neuron.2016.12.024
  • Ram, K.R., & Wolfner, M.F. (2007). Sustained post-mating response in Drosophila melanogaster requires multiple seminal fluid proteins. PLoS Genet, 3, e238. doi:10.1371/journal.pgen.0030238
  • Ramaswamy, S.B. (1988). Host finding by moths: Sensory modalities and behaviours. Journal of Insect Physiology, 34, 235–249. doi:10.1016/0022-1910(88)90054-6
  • Rausher, M.D. (1978). Search image for leaf shape in a butterfly. Science (New York, NY), 200, 1071–1073. doi:10.1126/science.200.4345.1071
  • Reisenman, C.E. (2004). Enantioselectivity of projection neurons innervating identified olfactory glomeruli. Journal of Neuroscience, 24, 2602–2611. doi:10.1523/JNEUROSCI.5192-03.2004
  • Reisenman, C.E., Riffell, J.A., Bernays, E.A., & Hildebrand, J.G. (2010). Antagonistic effects of floral scent in an insect-plant interaction. Proceedings of the Royal Society B: Biological Sciences, 277, 2371–2379. doi:10.1098/rspb.2010.0163
  • Renou, M. (1983). Les récepteurs gustatifs du tarse antérieur de la femelle d’Heliconius charitonius (Lep.: Heliconiidae.). Annales de la Société Entomologique de France (NS), 19, 101–106.
  • Rezával, C., Nojima, T., Neville, M.C., Lin, A.C., & Goodwin, S.F. (2014). Sexually dimorphic octopaminergic neurons modulate female postmating behaviors in Drosophila. Current Biology, 24, 725–730. doi:10.1016/j.cub.2013.12.051
  • Rezával, C., Pavlou, H.J., Dornan, A.J., Chan, Y.-B., Kravitz, E.A., & Goodwin, S.F. (2012). Neural circuitry underlying Drosophila female postmating behavioral responses. Current Biology, 22, 1155–1165. doi:10.1016/j.cub.2012.04.062
  • Rideout, E.J., Dornan, A.J., Neville, M.C., Eadie, S., & Goodwin, S.F. (2010). Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nature Neuroscience, 13, 458. doi:10.1038/nn.2515
  • Riffell, J.A., Alarcon, R., Abrell, L., Davidowitz, G., Bronstein, J.L., & Hildebrand, J.G. (2008). Behavioral consequences of innate preferences and olfactory learning in hawkmoth–flower interactions. Proceedings of the National Academy of Sciences, 105, 3404–3409. doi:10.1073/pnas.0709811105
  • Rockwell, R.F., & Grossfield, J. (1978). Drosophila: Behavioral cues for oviposition. American Midland Naturalist, 99, 361–368. doi:10.2307/2424813
  • Rodríguez-Valentín, R., López-González, I., Jorquera, R., Labarca, P., Zurita, M., & Reynaud, E. (2006). Oviduct contraction in Drosophila is modulated by a neural network that is both, octopaminergic and glutamatergic. Journal of Cellular Physiology, 209, 183–198. doi:10.1002/jcp.20722
  • Roeder, T. (2005). Tyramine and octopamine: Ruling behavior and metabolism. Annual Review of Entomology, 50, 447–477. doi:10.1146/annurev.ento.50.071803.130404
  • Ryuda, M., Calas-List, D., Yamada, A., Marion-Poll, F., Yoshikawa, H., Tanimura, T., & Ozaki, K. (2013). Gustatory sensing mechanism coding for multiple oviposition stimulants in the swallowtail butterfly, Papilio xuthus. Journal of Neuroscience, 33, 914–924. doi:10.1523/JNEUROSCI.1405-12.2013
  • Sarin, S., & Dukas, R. (2009). Social learning about egg-laying substrates in fruitflies. Proceedings. Biological Sciences, 276, 4323–4328. doi:10.1098/rspb.2009.1294
  • Schwartz, N.U., Zhong, L., Bellemer, A., & Tracey, W.D. (2012). Egg laying decisions in Drosophila are consistent with foraging costs of larval progeny. PLoS One, 7, e37910. doi:10.1371/journal.pone.0037910
  • Seada, M.A., Ignell, R., & Anderson, P. (2016). Morphology and distribution of ovipositor sensilla of female cotton leaf worm S podoptera littoralis (Lepidoptera: Noctuidae), and evidence for gustatory function: Spodoptera ovipositor sensilla. Entomological Science, 19, 9–19. doi:10.1111/ens.12160
  • Seeholzer, L.F., Seppo, M., Stern, D.L., & Ruta, V. (2018). Evolution of a central neural circuit underlies Drosophila mate preferences. Nature, 559, 564–569. doi:10.1038/s41586-018-0322-9
  • Sheeba, V., Chandrashekaran, M.K., Joshi, A., & Sharma, V.K. (2001). Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. The Journal of Experimental Zoology, 290, 541–549. doi:10.1002/jez.1098
  • Silva, Rd., & Lange, A.B. (2011). Evidence of a central pattern generator regulating spermathecal muscle activity in Locusta migratoria and its coordination with oviposition. Journal of Experimental Biology, 214, 757–763. doi:10.1242/jeb.049379
  • Sitnik, J.L., Gligorov, D., Maeda, R.K., Karch, F., & Wolfner, M.F. (2016). The female post-mating response requires genes expressed in the secondary cells of the male accessory gland in Drosophila melanogaster. Genetics, 202, 1029–1041. doi:10.1534/genetics.115.181644
  • Snodgrass, R.E. (1935). Principles of insect morphology. New York and London: McGraw-Hill Book Company.
  • Soller, M., Bownes, M., & Kubli, E. (1999). Control of oocyte maturation in sexually mature Drosophila females. Developmental Biology, 208, 337–351. doi:10.1006/dbio.1999.9210
  • Sparks, M.R. (1970). A surrogate leaf for oviposition by the tobacco hornworm12. Journal of Economic Entomology, 63, 537–540. doi:10.1093/jee/63.2.537
  • Sparks, M.R. (1973). Physical and chemical stimuli affecting oviposition preference of Manduca sexta (Lepidoptera: Sphingidae). Annals of the Entomological Society of America, 66, 571–573. doi:10.1093/aesa/66.3.571
  • Stensmyr, M.C., Dweck, H.K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., … Hansson, B.S. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell, 151, 1345–1357. doi:10.1016/j.cell.2012.09.046
  • Stensmyr, M.C., Stieber, R., & Hansson, B.S. (2008). The Cayman crab fly revisited-phylogeny and biology of Drosophila endobranchia. PLoS ONE, 3, e1942. doi:10.1371/journal.pone.0001942
  • Sumethasorn, M., & Turner, T.L. (2016). Oviposition preferences for ethanol depend on spatial arrangement and differ dramatically among closely related Drosophila species. Biology Open, 5, 1642–1647. doi:10.1242/bio.019380
  • Sun, J., & Spradling, A.C. (2013). Ovulation in Drosophila is controlled by secretory cells of the female reproductive tract. eLife, 2, e00415. doi:10.7554/eLife.00415
  • Suver, M.P., Mamiya, A., & Dickinson, M.H. (2012). Octopamine neurons mediate flight-induced modulation of visual processing in Drosophila. Current Biology, 22, 2294–2302. doi:10.1016/j.cub.2012.10.034
  • Tamashiro, H., & Yoshino, M. (2014). Signaling pathway underlying the octopaminergic modulation of myogenic contraction in the cricket lateral oviduct. Journal of Insect Physiology, 71, 30–36. doi:10.1016/j.jinsphys.2014.09.010
  • Taylor, B.J. (1989). Sexually dimorphic neurons of the terminalia of Drosophila melanogaster: II. Sex-specific axonal arborizations in the central nervous system. Journal of Neurogenetics, 5, 193–213. doi:10.3109/01677068909066208
  • Thomas, A. (1979). Nervous control of egg progression into the common oviduct and genital chamber of the stick-insect Carausius morosus. Journal of Insect Physiology, 25, 811–823. doi:10.1016/0022-1910(79)90084-2
  • Thompson, K.J. (1986). Oviposition digging in the grasshopper. II. Descending neural control. The Journal of Experimental Biology, 122, 413–425.
  • von Helversen, D., & von Helversen, O. (1991). Pre-mating sperm removal in the bushcricket Metaplastes ornatus Ramme 1931 (Orthoptera, Tettigonoidea, Phaneropteridae). Behavioral Ecology and Sociobiology, 28, 391–396. doi:10.1007/BF00164120
  • Vosshall, L.B., Wong, A.M., & Axel, R. (2000). An olfactory sensory map in the fly brain. Cell, 102, 147–159. doi:10.1016/S0092-8674(00)00021-0
  • Walther, C., & Zittlau, K.E. (1998). Resting membrane properties of locust muscle and their modulation II. Actions of the biogenic amine octopamine. Journal of Neurophysiology, 80, 785–797. doi:10.1152/jn.1998.80.2.785
  • Wertheim, B., Dicke, M., & Vet, L.E.M. (2002). Behavioural plasticity in support of a benefit for aggregation pheromone use in Drosophila melanogaster. Entomologia Experimentalis et Applicata, 103, 61–71. doi:10.1046/j.1570-7458.2002.00954.x
  • Wu, C.-L., Fu, T.-F., Chou, Y.-Y., & Yeh, S.-R. (2015). A single pair of neurons modulates egg-laying decisions in Drosophila. PLoS One, 10, e0121335. doi:10.1371/journal.pone.0121335
  • Yadav, P., & Borges, R.M. (2017). The insect ovipositor as a volatile sensor within a closed microcosm. Journal of Experimental Biology, 220, 1554–1557. doi:10.1242/jeb.152777
  • Yamaoka, K., Hoshino, M., & Hirao, T. (1971). Role of sensory hairs on the anal papillae in oviposition behaviour of Bombyx mori. Journal of Insect Physiology, 17, 897–911. doi:10.1016/0022-1910(71)90106-5
  • Yang, C.H., Belawat, P., Hafen, E., Jan, L.Y., & Jan, Y.-N. (2008). Drosophila egg-laying site selection as a system to study simple decision-making processes. Science (New York, NY), 319, 1679–1683. doi:10.1126/science.1151842
  • Yang, C.H., He, R., & Stern, U. (2015). Behavioral and circuit basis of sucrose rejection by drosophila females in a simple decision-making task. Journal of Neuroscience, 35, 1396–1410. doi:10.1523/JNEUROSCI.0992-14.2015
  • Yang, C.H., Rumpf, S., Xiang, Y., Gordon, M.D., Song, W., Jan, L.Y., & Jan, Y.-N. (2009). Control of the postmating behavioral switch in Drosophila females by internal sensory neurons. Neuron, 61, 519–526. doi:10.1016/j.neuron.2008.12.021
  • Yapici, N., Kim, Y.-J., Ribeiro, C., & Dickson, B.J. (2008). A receptor that mediates the post-mating switch in Drosophila reproductive behaviour. Nature, 451, 33–37. doi:10.1038/nature06483
  • Yassin, A., & Orgogozo, V. (2013). Coevolution between male and female genitalia in the Drosophila melanogaster species subgroup. PLoS One, 8, e57158. doi:10.1371/journal.pone.0057158
  • Zhang, G.-N., Hu, F., Dou, W., & Wang, J.-J. (2012). Morphology and distribution of Sensilla on Tarsi and ovipositors of six fruit flies (Diptera: Tephritidae). Annals of the Entomological Society of America, 107, 319–327. doi:10.1603/AN11132
  • Zhu, E.Y., Guntur, A.R., He, R., Stern, U., & Yang, C.-H. (2014). Egg-laying demand induces aversion of UV light in Drosophila females. Current Biology, 24, 2797–2804. doi:10.1016/j.cub.2014.09.076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.