470
Views
12
CrossRef citations to date
0
Altmetric
Original Research Articles

Milk-whey diet substantially suppresses seizure-like phenotypes of paraShu, a Drosophila voltage-gated sodium channel mutant

, , , , &
Pages 164-178 | Received 20 Aug 2018, Accepted 14 Mar 2019, Published online: 16 May 2019

References

  • Benzer, S. (1971). From the gene to behavior. JAMA, 218, 1015–1022. doi:10.1001/jama.1971.03190200047010
  • Berkovic, S.F., Mulley, J.C., Scheffer, I.E., & Petrou, S. (2006). Human epilepsies: Interaction of genetic and acquired factors. Trends in Neurosciences, 29, 391–397. doi:10.1016/j.tins.2006.05.009
  • Burg, M.G., & Wu, C.F. (2012). Mechanical and temperature stressor-induced seizure-and-paralysis behaviors in Drosophila bang-sensitive mutants. Journal of Neurogenetics, 26, 189–197. doi:10.3109/01677063.2012.690011
  • Catterall, W.A. (2012) Sodium channel mutations and epilepsy. In J.L. Noebels, M. Avoli, M.A. Rogawski, R.W. Olsen, & A.V. Delgado-Escueta (Eds.), Jasper’s basic mechanisms of the epilepsies. Bethesda (MD): Oxford University Press. 675–683.
  • Catterall, W.A., Kalume, F., & Oakley, J.C. (2010). NaV1.1 channels and epilepsy. The Journal of Physiology (Lond.), 588, 1849–1859. doi:10.1113/jphysiol.2010.187484
  • Chan, W.P., & Dickinson, M.H. (1996). In vivo length oscillations of indirect flight muscles in the fruit fly Drosophila virilis. The Journal of Experimental Biology, 199, 2767–2774.
  • Chen, Z., Brodie, M.J., Liew, D., & Kwan, P. (2018). Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: A 30-year longitudinal cohort study. JAMA Neurology, 75, 279–286. doi:10.1001/jamaneurol.2017.3949
  • Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C., & De Jonghe, P. (2001). De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. The American Journal of Human Genetics, 68, 1327–1332. doi:10.1086/320609
  • Cook, R.K., Christensen, S.J., Deal, J.A., Coburn, R.A., Deal, M.E., Gresens, J.M., … Cook, K.R. (2012). The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biology, 13, R21. doi:10.1186/gb-2012-13-3-r21
  • del Valle Rodriguez, A., Didiano, D., & Desplan, C. (2011). Power tools for gene expression and clonal analysis in Drosophila. Nature Methods, 9, 47–55. doi:10.1038/nmeth.1800
  • Dickinson, M., & Tu, M. (1997). The function of dipteran flight muscle. Comparative Biochemistry & Physiology A, 116, 223–238. doi:10.1016/S0300-9629(96)00162-4
  • Doll, C.A., & Broadie, K. (2014). Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. Frontiers in Cellular Neuroscience, 8, 30. doi:10.3389/fncel.2014.00030
  • Ehaideb, S.N., Iyengar, A., Ueda, A., Iacobucci, G.J., Cranston, C., Bassuk, A.G., … Manak, J.R. (2014). Prickle modulates microtubule polarity and axonal transport to ameliorate seizures in flies. Proceedings of the National Academy of Sciences of the United States of America, 111, 11187–11192. doi:10.1073/pnas.1403357111
  • Engel, J.E., & Wu, C.F. (1992). Interactions of membrane excitability mutations affecting potassium and sodium currents in the flight and giant fiber escape systems of Drosophila. The Journal of Comparative Physiology A, 171, 93–104.
  • Folch, J., Lees, M., & Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226, 497–509.
  • Frankel, A.W.K., & Brousseau, G.E. (1968). Drosophila medium that does not require dried yeast. Drosophila Information Service, 43, 184.
  • Ganetzky, B., & Wu, C.F. (1982). Indirect suppression involving behavioral mutants with altered nerve excitability in Drosophila melanogaster. Genetics, 100, 597–614.
  • Ganetzky, B., & Wu, C.F. (1983). Neurogenetic analysis of potassium currents in Drosophila: synergistic effects on neuromuscular transmission in double mutants. Journal of Neurogenetics, 1, 17–28. doi:10.3109/01677068309107069
  • Giachello, C.N., & Baines, R.A. (2015). Inappropriate neural activity during a sensitive period in embryogenesis results in persistent seizure-like behavior. Current Biology, 25, 2964–2968. doi:10.1016/j.cub.2015.09.040
  • Gilestro, G.F. & Cirelli, C. (2009). pySolo: a complete suite for sleep analysis in Drosophila. Bioinformatics, 25, 1466–1467. doi: 10.1093/bioinformatics/btp237
  • Goldin, A.L. (2002). Evolution of voltage-gated Na(+) channels. The Journal of Experimental Biology, 205, 575–584.
  • Herbert, M.R. (2010). Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Current Opinion in Neurology, 23, 103–110. doi:10.1097/WCO.0b013e328336a01f
  • Hirtz, D., Thurman, D.J., Gwinn-Hardy, K., Mohamed, M., Chaudhuri, A.R., & Zalutsky, R. (2007). How common are the "common" neurologic disorders? Neurology, 68, 326–337. doi:10.1212/01.wnl.0000252807.38124.a3
  • Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology (Lond.), 117, 500–544. doi:10.1113/jphysiol.1952.sp004764
  • Horne, M., Krebushevski, K., Wells, A., Tunio, N., Jarvis, C., Francisco, G., … Deitcher, D.L. (2017). Julius seizure, a Drosophila mutant, defines a neuronal population underlying epileptogenesis. Genetics, 205, 1261–1269. doi:10.1534/genetics.116.199083
  • Hunter, D.J. (2005). Gene-environment interactions in human diseases. Nature Reviews Genetics, 6, 287–298. doi:10.1038/nrg1578
  • Iyengar, A., & Wu, C.F. (2014). Flight and seizure motor patterns in Drosophila mutants: Simultaneous acoustic and electrophysiological recordings of wing beats and flight muscle activity. Journal of Neurogenetics, 28, 316–328. doi:10.3109/01677063.2014.957827
  • Kaas, G.A., Kasuya, J., Lansdon, P., Ueda, A., Iyengar, A., Wu, C.F., & Kitamoto, T. (2016). Lithium-responsive seizure-like hyperexcitability is caused by a mutation in the Drosophila voltage-gated sodium channel gene paralytic. eNeuro, 3, 0221-16. doi:10.1523/ENEURO.0221-16.2016.
  • Kamb, A., Iverson, L.E., & Tanouye, M.A. (1987). Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell, 50, 405–413. doi:10.1016/0092-8674(87)90494-6
  • Kawasaki, F., Felling, R., & Ordway, R.W. (2000). A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila. Journal of Neuroscience, 20, 4885–4889. doi:10.1523/JNEUROSCI.20-13-04885.2000
  • Kroon, T., Sierksma, M.C., & Meredith, R.M. (2013). Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: A perspective. Frontiers in Systems Neuroscience, 7, 75. doi:10.3389/fnsys.2013.00075
  • Kullmann, D.M., & Waxman, S.G. (2010). Neurological channelopathies: New insights into disease mechanisms and ion channel function. Journal Physiology (Lond.), 588, 1823–1827. doi:10.1113/jphysiol.2010.190652
  • Lee, J., & Wu, C.F. (2002). Electroconvulsive seizure behavior in Drosophila: Analysis of the physiological repertoire underlying a stereotyped action pattern in bang-sensitive mutants. Journal of Neuroscience, 22, 11065–11079. doi:10.1523/JNEUROSCI.22-24-11065.2002
  • Lee, J., & Wu, C.F. (2006). Genetic modifications of seizure susceptibility and expression by altered excitability in Drosophila Na(+) and K(+) channel mutants. Journal of Neurophysiology, 96, 2465–2478. doi:10.1152/jn.00499.2006
  • Lee, J., Iyengar, A., & Wu, C.F. (in press). Distinctions among electroconvulsion- and proconvulsant-induced seizure discharges and native motor patterns during flight and grooming: Quantitative spike pattern analysis in Drosophila flight muscles. Journal of Neurogenetics.
  • Lee, W.C., & Micchelli, C.A. (2013). Development and characterization of a chemically defined food for Drosophila. PLoS One, 8, e67308. doi:10.1371/journal.pone.0067308
  • Levine, J., & Hughes, M. (1973). Stereotaxic map of the muscle fibers in the indirect flight muscles of Drosophila melanogaster. Journal of Morphology, 140, 153–158. doi:10.1002/jmor.1051400203
  • Lewis, E.B. (1960). A new standard food medium. Drosophila Information Service, 34, 117–118.
  • Lilly, M., Kreber, R., Ganetzky, B., & Carlson, J.R. (1994). Evidence that the Drosophila olfactory mutant smellblind defines a novel class of sodium channel mutation. Genetics, 136, 1087–1096.
  • Lin, W.H., Wright, D.E., Muraro, N.I., & Baines, R.A. (2009). Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation, and persistent current. Journal of Neurophysiology, 102, 1994–2006. doi:10.1152/jn.00613.2009
  • Lindsay, H.A., Baines, R., Ffrench-Constant, R., Lilley, K., Jacobs, H.T., & O’Dell, K.M. (2008). The dominant cold-sensitive Out-cold mutants of Drosophila melanogaster have novel missense mutations in the voltage-gated sodium channel gene paralytic. Genetics, 180, 873–884. doi:10.1534/genetics.108.090951
  • Martin, R.L., Pittendrigh, B., Liu, J., Reenan, R., Ffrench-Constant, R., & Hanck, D.A. (2000). Point mutations in domain III of a Drosophila neuronal Na channel confer resistance to allethrin. Insect Biochemistry and Molecular Biology, 30, 1051–1059. doi:10.1016/S0965-1748(00)00080-1
  • Meltzer, S., Bagley, J.A., Perez, G.L., O’Brien, C.E., DeVault, L., Guo, Y., … Jan, Y.-N. (2017). Phospholipid homeostasis regulates dendrite morphogenesis in drosophila sensory neurons. Cell Reports, 21, 859–866. doi:10.1016/j.celrep.2017.09.089
  • Meredith, R.M., Dawitz, J., & Kramvis, I. (2012). Sensitive time-windows for susceptibility in neurodevelopmental disorders. Trends in Neurosciences, 35, 335–344. doi:10.1016/j.tins.2012.03.005
  • Miller, A. (1950) The internal anatomy and histology of the image of Drosophila melanogaster. In Demerec M (ed.), Biology of drosophila (pp. 420–524). Plainview, NY, USA: Cold Spring Harbor Press.
  • Modgil, S., Lahiri, D.K., Sharma, V.L., & Anand, A. (2014). Role of early life exposure and environment on neurodegeneration: Implications on brain disorders. Translational Neurodegeneration, 3, 9. doi:10.1186/2047-9158-3-9
  • Neal, E.G., Chaffe, H., Schwartz, R.H., Lawson, M.S., Edwards, N., Fitzsimmons, G., … Cross, J.H. (2008). The ketogenic diet for the treatment of childhood epilepsy: A randomised controlled trial. The Lancet Neurology, 7, 500–506. doi:10.1016/S1474-4422(08)70092-9
  • Nicolai, L.J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A.S., Yan, J., … Hassan, B.A. (2010). Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 107, 20553–20558. doi:10.1073/pnas.1010198107
  • Olson, R.O., Liu, Z., Nomura, Y., Song, W., & Dong, K. (2008). Molecular and functional characterization of voltage-gated sodium channel variants from Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 38, 604–610. doi:10.1016/j.ibmb.2008.01.003
  • Papazian, D.M., Schwarz, T.L., Tempel, B.L., Jan, Y.N., & Jan, L.Y. (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 237, 749–753. doi:10.1126/science.2441470
  • Parker, L., Padilla, M., Du, Y., Dong, K., & Tanouye, M.A. (2011). Drosophila as a model for epilepsy: bss is a gain-of-function mutation in the para sodium channel gene that leads to seizures. Genetics, 187, 523–534. doi:10.1534/genetics.110.123299
  • Pavlidis, P., & Tanouye, M.A. (1995). Seizures and failures in the giant fiber pathway of Drosophila bang-sensitive paralytic mutants. Journal of Neurosciences, 15, 5810–5819.
  • Pavlidis, P., Ramaswami, M., & Tanouye, M.A. (1994). The Drosophila easily shocked gene: A mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell, 79, 23–33. doi:10.1016/0092-8674(94)90397-2
  • Pereira, P.C. (2014). Milk nutritional composition and its role in human health. Nutrition, 30, 619–627. doi:10.1016/j.nut.2013.10.011
  • Pfeiffer, B.D., Ngo, T.T., Hibbard, K.L., Murphy, C., Jenett, A., Truman, J.W., & Rubin, G.M. (2010). Refinement of tools for targeted gene expression in Drosophila. Genetics, 186, 735–755. doi:10.1534/genetics.110.119917
  • Piper, M.D., Blanc, E., Leitao-Goncalves, R., Yang, M., He, X., Linford, N.J., … Partridge, L. (2014). A holidic medium for Drosophila melanogaster. Natural Methods, 11, 100–105. doi:10.1038/nmeth.2731
  • Pongs, O., Kecskemethy, N., Muller, R., Krah-Jentgens, I., Baumann, A., Kiltz, H.H., … Ferrus, A. (1988). Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO Journal, 7, 1087–1096. doi:10.1002/j.1460-2075.1988.tb02917.x
  • Pringle, J.W. (1978). The Croonian Lecture, 1977. Stretch activation of muscle: Function and mechanism . Proceedings of the Royal Society of London. Series B, Biological sciences, 201, 107–130. doi:10.1098/rspb.1978.0035
  • Reenan, R.A., Hanrahan, C.J., & Ganetzky, B. (2000). The mle(napts) RNA helicase mutation in drosophila results in a splicing catastrophe of the para Na + channel transcript in a region of RNA editing. Neuron, 25, 139–149. doi:10.1016/S0896-6273(00)80878-8
  • Schutte, R.J., Schutte, S.S., Algara, J., Barragan, E.V., Gilligan, J., Staber, C., … O’Dowd, D.K. (2014). Knock-in model of Dravet syndrome reveals a constitutive and conditional reduction in sodium current. Journal of Neurophysiology, 112, 903–912. doi:10.1152/jn.00135.2014
  • Smith, L.A., Wang, X., Peixoto, A.A., Neumann, E.K., Hall, L.M., & Hall, J.C. (1996). A Drosophila calcium channel alpha1 subunit gene maps to a genetic locus associated with behavioral and visual defects. Journal of Neuroscience, 16, 7868–7879. doi:10.1523/JNEUROSCI.16-24-07868.1996
  • Sun, L., Gilligan, J., Staber, C., Schutte, R.J., Nguyen, V., O’Dowd, D.K., & Reenan, R. (2012). A knock-in model of human epilepsy in Drosophila reveals a novel cellular mechanism associated with heat-induced seizure. Journal of Neuroscience, 32, 14145–14155. doi:10.1523/JNEUROSCI.2932-12.2012
  • Suzuki, D.T., Grigliatti, T., & Williamson, R. (1971). Temperature-sensitive mutations in Drosophila melanogaster. VII. A mutation (para-ts) causing reversible adult paralysis. Proceedings of the National Academy of Sciences of the United States of America, 68, 890–893. doi:10.1073/pnas.68.5.890
  • Truman, J.W. (1990). Metamorphosis of the central nervous system of Drosophila. Journal of Neurobiology, 21, 1072–1084. doi:10.1002/neu.480210711
  • Vining, E.P., Freeman, J.M., Ballaban-Gil, K., Camfield, C.S., Camfield, P.R., Holmes, G.L., … Wheless, J.W. (1998). A multicenter study of the efficacy of the ketogenic diet. Archives of Neurology, 55, 1433–1437. doi:10.1001/archneur.55.11.1433
  • Warmke, J., Drysdale, R., & Ganetzky, B. (1991). A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science, 252, 1560–1562. doi:10.1126/science.1840699
  • Wheless, J.W. (2008). History of the ketogenic diet. Epilepsia, 49, 3–5. doi:10.1111/j.1528-1167.2008.01821.x
  • Williamson, R.L. (1982). Lithium stops hereditary shuddering in Drosophila melanogaster. Psychopharmacology (Berl), 76, 265–268. doi:10.1007/BF00432558
  • Wu, C.F., & Ganetzky, B. (1980). Genetic alteration of nerve membrane excitability in temperature-sensitive paralytic mutants of Drosophila melanogaster. Nature, 286, 814–816. doi:10.1038/286814a0
  • Zhang, H., Tan, J., Reynolds, E., Kuebler, D., Faulhaber, S., & Tanouye, M. (2002a). The Drosophila slamdance gene: a mutation in an aminopeptidase can cause seizure, paralysis and neuronal failure. Genetics, 162, 1283–1299.
  • Zhang, Y.Q., Rodesch, C.K., & Broadie, K. (2002b). Living synaptic vesicle marker: Synaptotagmin-GFP. Genesis, 34, 142–145. doi:10.1002/gene.10144
  • Zhong, X. (2004). Behavioral and electrophysiological modification of seizure by ketogenic diet and pharmacological agents in Drosophila bang-sensitive mutants (MS Thesis, University of Iowa).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.