301
Views
5
CrossRef citations to date
0
Altmetric
Original Research Articles

System level analysis of motor-related neural activities in larval Drosophila

, ORCID Icon, , , , ORCID Icon, & show all
Pages 179-189 | Received 31 Mar 2018, Accepted 05 Apr 2019, Published online: 07 Jun 2019

References

  • Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M., & Keller, P.J. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 10, 413. doi:10.1038/nmeth.2434
  • Berni, J., Pulver, S.R., Griffith, L.C., & Bate, M. (2012). Autonomous circuitry for substrate exploration in freely moving Drosophila larvae. Current Biology, 22, 1861–1870. doi:10.1016/j.cub.2012.07.048
  • Briggman, K.L., Abarbanel, H.D., & Kristan, W.B. (2005). Optical imaging of neuronal populations during decision-making. Science, 307, 896–901. doi:10.1126/science.1103736
  • Briggman, K.L., & Kristan, W.B. (2008). Multifunctional pattern-generating circuits. Annual Review of Neuroscience, 31, 271–294. doi:10.1146/annurev.neuro.31.060407.125552
  • Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., … Looger, L.L. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 499, 295. doi:10.1038/nature12354
  • Davis, G.W., Schuster, C.M., & Goodman, C.S. (1997). Genetic analysis of the mechanisms controlling target selection: target-derived Fasciclin II regulates the pattern of synapse formation. Neuron, 19(3), 561–573.
  • Delcomyn, F. (1980). Neural basis of rhythmic behavior in animals. Science, 210, 492–498. doi: 10.1126/science.7423199 doi:10.1126/science.7423199
  • Duda, R., & Hart, P. (1973). Pattern classification and scene analysis (p. 19i3). New York, NY: Wiley-Interscience.
  • Fox, L.E., Soll, D.R., & Wu, C.F. (2006). Coordination and modulation of locomotion pattern generators in Drosophila larvae: Effects of altered biogenic amine levels by the tyramine β hydroxlyase mutation. Journal of Neuroscience, 26, 1486–1498. doi:10.1523/JNEUROSCI.4749-05.2006
  • Fushiki, A., Zwart, M.F., Kohsaka, H., Fetter, R.D., Cardona, A., & Nose, A. (2016). A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. Elife, 5, e13253. doi:10.7554/eLife.13253
  • Harris, C., & Stephens, M. (1988). A combined corner and edge detector. In Alvey Vision Conference: Vol. 15. No. 10–5244. University Park, PA: Pennsylvania State University. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.1604
  • Hasegawa, E., Truman, J.W., & Nose, A. (2016). Identification of excitatory premotor interneurons which regulate local muscle contraction during Drosophila larval locomotion. Scientific Reports, 6, 30806. doi:10.1038/srep30806
  • Heckscher, E.S., Lockery, S.R., & Doe, C.Q. (2012). Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. Journal of Neuroscience, 32, 12460–12471. doi:10.1523/JNEUROSCI.0222-12.2012
  • Heckscher, E.S., Zarin, A.A., Faumont, S., Clark, M.Q., Manning, L., Fushiki, A., … Doe, C.Q. (2015). Even-skipped + interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude. Neuron, 88, 314–329. doi:10.1016/j.neuron.2015.09.009
  • Itakura, Y., Kohsaka, H., Ohyama, T., Zlatic, M., Pulver, S.R., & Nose, A. (2015). Identification of inhibitory premotor interneurons activated at a late phase in a motor cycle during Drosophila larval locomotion. PLoS One, 10, e0136660. doi:10.1371/journal.pone.0136660
  • Kato, S., Kaplan, H.S., Schrödel, T., Skora, S., Lindsay, T.H., Yemini, E., … Zimmer, M. (2015). Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell, 163, 656–669. doi:10.1016/j.cell.2015.09.034
  • Kohsaka, H., Takasu, E., Morimoto, T., & Nose, A. (2014). A group of segmental premotor interneurons regulates the speed of axial locomotion in Drosophila larvae. Current Biology, 24, 2632–2642. doi:10.1016/j.cub.2014.09.026
  • Landgraf, M., Jeffrey, V., Fujioka, M., Jaynes, J.B., & Bate, M. (2003). Embryonic origins of a motor system: Motor dendrites form a myotopic map in Drosophila. PLoS Biology, 1, E41. doi:10.1371/journal.pbio.0000041
  • Lemon, W.C., Pulver, S.R., Höckendorf, B., McDole, K., Branson, K., Freeman, J., & Keller, P.J. (2015). Whole-central nervous system functional imaging in larval Drosophila. Nature Communications, 6, 7924. doi:10.1038/ncomms8924
  • Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110. doi:10.1023/B:VISI.0000029664.99615.94
  • Marder, E., & Calabrese, R.L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76, 687–717. doi:10.1152/physrev.1996.76.3.687
  • Ohyama, T., Schneider-Mizell, C.M., Fetter, R.D., Aleman, J.V., Franconville, R., Rivera-Alba, M., … Zlatic, M. (2015). A multilevel multimodal circuit enhances action selection in Drosophila. Nature, 520, 633. doi:10.1038/nature14297
  • Park, J., Kondo, S., Tanimoto, H., Kohsaka, H., & Nose, A. (2018). Data-driven analysis of motor activity implicated 5-HT2A neurons in backward locomotion of larval Drosophila. Scientific Reports, 8, 10307. doi:10.1038/s41598-018-28680-8
  • Prevedel, R., Yoon, Y.G., Hoffmann, M., Pak, N., Wetzstein, G., Kato, S., … Vaziri, A. (2014). Simultaneous whole-animal 3D imaging of neuronal activity using light-field microscopy. Nature Methods, 11, 727. doi:10.1038/nmeth.2964
  • Pulver, S.R., Bayley, T.G., Taylor, A.L., Berni, J., Bate, M., & Hedwig, B. (2015). Imaging fictive locomotor patterns in larval Drosophila. Journal of Neurophysiology, 114, 2564–2577. doi:10.1152/jn.00731.2015
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv, 1409, 1556. https://arxiv.org/abs/1409.1556
  • Sobel, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing. A Talk at the Stanford Artificial Project, 271–272. https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_image_processing
  • Takagi, S., Cocanougher, B.T., Niki, S., Miyamoto, D., Kohsaka, H., Kazama, H., … Nose, A. (2017). Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila. Neuron, 96, 1373–1387. doi:10.1016/j.neuron.2017.10.030
  • Takao, D., Taniguchi, A., Takeda, T., Sonobe, S., & Nonaka, S. (2012). High-speed imaging of amoeboid movements using light-sheet microscopy. PLoS One, 7, e50846. doi:10.1371/journal.pone.0050846
  • Vladimirov, N., Mu, Y., Kawashima, T., Bennett, D.V., Yang, C.-T., Looger, L.L., … Ahrens, M.B. (2014). Light-sheet functional imaging in fictively behaving zebrafish. Nature Methods, 11, 883. doi:10.1038/nmeth.3040
  • Zwart, M.F., Pulver, S.R., Truman, J.W., Fushiki, A., Fetter, R.D., Cardona, A., & Landgraf, M. (2016). Selective inhibition mediates the sequential recruitment of motor pools. Neuron, 91, 615–628. doi:10.1016/j.neuron.2016.06.031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.