5,004
Views
9
CrossRef citations to date
0
Altmetric
Original Research Articles

Continuous tracking of startled Drosophila as an alternative to the negative geotaxis climbing assay

ORCID Icon & ORCID Icon
Pages 190-198 | Received 29 Mar 2019, Accepted 17 Jun 2019, Published online: 10 Jul 2019

References

  • Amaral, J. D., Xavier, J. M., Steer, C. J., & Rodrigues, C. M. (2010). The role of p53 in apoptosis. Discovery Medicine, 9, 145–152.
  • Beharry, C., Alaniz, M. E., & Alonso, A. d. C. (2013). Expression of Alzheimer-like pathological human tau induces a behavioral motor and olfactory learning deficit in Drosophila melanogaster. Journal of Alzheimer’s Disease, 37, 539–550. doi:10.3233/JAD-130617
  • Beucher, A., Birraux, J., Tchouandong, L., Barton, O., Shibata, A., Conrad, S., … Löbrich, M. (2009). ATM and artemis promote homologous recombination of radiation‐induced DNA double‐strand breaks in G2. The EMBO Journal, 28, 3413–3427. doi:10.1038/emboj.2009.276
  • Bouleau, S., & Tricoire, H. (2015). Drosophila models of Alzheimer’s disease: Advances, limits, and perspectives. Journal of Alzheimer’s Disease, 45, 1015–1038. doi:10.3233/JAD-142802
  • Caesar, I., Jonson, M., Nilsson, K. P. R., Thor, S., & Hammarström, P. (2012). Curcumin promotes A-beta fibrillation and reduces neurotoxicity in transgenic Drosophila. PLoS One, 7, e31424. doi:10.1371/journal.pone.0031424
  • Casci, I., & Pandey, U. B. (2015). A fruitful endeavor: Modeling ALS in the fruit fly. Brain Research, 1607, 47–74. doi:10.1016/j.brainres.2014.09.064
  • Cenini, G., Sultana, R., Memo, M., & Butterfield, D. A. (2008). Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 12, 987–994. doi:10.1111/j.1582-4934.2008.00163.x
  • Chang, J. R., Ghafouri, M., Mukerjee, R., Bagashev, A., Chabrashvili, T., & Sawaya, B. E. (2012). Role of p53 in neurodegenerative diseases. Neurodegenerative Diseases, 9, 68–80. doi:10.1159/000329999
  • Chatoo, W., Abdouh, M., & Bernier, G. (2010). p53 pro-oxidant activity in the central nervous system: Implication in aging and neurodegenerative diseases. Antioxidants & Redox Signaling, 15, 1729–1737. doi:10.1089/ars.2010.3610
  • Crowther, D. C., Kinghorn, K. J., Miranda, E., Page, R., Curry, J. A., Duthie, F. A. I., … Lomas, D. A. (2005). Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience, 132, 123–135. doi:10.1016/j.neuroscience.2004.12.025
  • Culmsee, C., & Mattson, M. P. (2005). p53 in neuronal apoptosis. Biochemical and Biophysical Research Communications, 331, 761–777. doi:10.1016/j.bbrc.2005.03.149
  • Davenport, C. M., Sevastou, I. G., Hooper, C., & Pocock, J. M. (2010). Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides. Journal of Neurochemistry, 112, 552–563. doi:10.1111/j.1471-4159.2009.06485.x
  • Faville, R., Kottler, B., Goodhill, G. J., Shaw, P. J., & van Swinderen, B. (2015). How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Scientific Reports, 5, 8454. doi:10.1038/srep08454
  • Ganetzky, B., & Flanagan, J. R. (1978). On the relationship between senescence and age-related changes in two wild-type strains of Drosophila melanogaster. Experimental Gerontology, 13, 189–196. doi:10.1016/0531-5565(78)90012-8
  • Gargano, J. W., Martin, I., Bhandari, P., & Grotewiel, M. S. (2005). Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Experimental Gerontology, 40, 386–395. doi:10.1016/j.exger.2005.02.005
  • Hewitt, V. L., & Whitworth, A. J. (2017). Mechanisms of Parkinson’s disease: lessons from Drosophila. Current Topics in Developmental Biology, 121, 173–200. doi:10.1016/bs.ctdb.2016.07.005
  • Hoege, C., Pfander, B., Moldovan, G.-L., Pyrowolakis, G., & Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 419, 135–141. doi:10.1038/nature00991
  • Jazvinšćak Jembrek, M., Slade, N., Hof, P. R., & Šimić, G. (2018). The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Progress in Neurobiology, 168, 104–127. doi:10.1016/j.pneurobio.2018.05.001
  • Jordán, J., Galindo, M. F., Prehn, J. H. M., Weichselbaum, R. R., Beckett, M., Ghadge, G. D., … Miller, R. J. (1997). p53 expression induces apoptosis in hippocampal pyramidal neuron cultures. Journal of Neuroscience, 17, 1397–1405. Retrieved from Scopus. doi:10.1523/JNEUROSCI.17-04-01397.1997
  • Kerr, F., Augustin, H., Piper, M. D. W., Gandy, C., Allen, M. J., Lovestone, S., & Partridge, L. (2011). Dietary restriction delays aging, but not neuronal dysfunction, in Drosophila models of Alzheimer’s disease. Neurobiology of Aging, 32, 1977–1989. doi:10.1016/j.neurobiolaging.2009.10.015
  • Kohlhoff, K. J., Jahn, T. R., Lomas, D. A., Dobson, C. M., Crowther, D. C., & Vendruscolo, M. (2011). The iFly tracking system for an automated locomotor and behavioural analysis of Drosophila melanogaster. Integrative Biology: Quantitative Biosciences from Nano to Macro, 3, 755–760. doi:10.1039/c0ib00149j
  • Kramer, J. M., & Staveley, B. E. (2003). GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genetics and Molecular Research, 2, 43–47.
  • Liu, H., Han, M., Li, Q., Zhang, X., Wang, W.-A., & Huang, F.-D. (2015). Automated rapid iterative negative geotaxis assay and its use in a genetic screen for modifiers of Aβ42-induced locomotor decline in Drosophila. Neuroscience Bulletin, 31, 541–549. doi:10.1007/s12264-014-1526-0
  • Lorenzo, A., & Yankner, B. A. (1994). Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo Red. Proceedings of the National Academy of Sciences, 91, 12243–12247. doi:10.1073/pnas.91.25.12243
  • McGurk, L., Berson, A., & Bonini, N. M. (2015). Drosophila as an in vivo model for human neurodegenerative disease. Genetics, 201, 377–402. doi:10.1534/genetics.115.179457
  • Miquel, J., Lundgren, P. R., Bensch, K. G., & Atlan, H. (1976). Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster. Mechanisms of Ageing and Development, 5, 347–370. doi:10.1016/0047-6374(76)90034-8
  • Pannunzio, N. R., Watanabe, G., & Lieber, M. R. (2018). Nonhomologous DNA end-joining for repair of DNA double-strand breaks. Journal of Biological Chemistry, 293, 10512–10523. doi:10.1074/jbc.TM117.000374
  • Podratz, J. L., Staff, N. P., Boesche, J. B., Giorno, N. J., Hainy, M. E., Herring, S. A., … Windebank, A. J. (2013). An automated climbing apparatus to measure chemotherapy-induced neurotoxicity in Drosophila melanogaster. Fly, 7, 187–192. doi:10.4161/fly.24789
  • Rezával, C., Werbajh, S., & Ceriani, M. F. (2007). Neuronal death in Drosophila triggered by GAL4 accumulation. European Journal of Neuroscience, 25, 683–694. doi:10.1111/j.1460-9568.2007.05317.x
  • Romero, E., Cha, G.-H., Verstreken, P., Ly, C. V., Hughes, R. E., Bellen, H. J., & Botas, J. (2008). Suppression of neurodegeneration and increased neurotransmission caused by expanded full-length huntingtin accumulating in the cytoplasm. Neuron, 57, 27–40. doi:10.1016/j.neuron.2007.11.025
  • Rosato, E., & Kyriacou, C. P. (2006). Analysis of locomotor activity rhythms in Drosophila. Nature Protocols, 1, 559–568. doi:10.1038/nprot.2006.79
  • Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N. K., Ito, K., & Vosshall, L. B. (2007). Activity-dependent plasticity in an olfactory circuit. Neuron, 56, 838–850. doi:10.1016/j.neuron.2007.10.035
  • Saitoe, M., Horiuchi, J., Tamura, T., & Ito, N. (2011). Drosophila as a novel animal model for studying the genetics of age-related memory impairment. Reviews in the Neurosciences, 16, 137–150. doi:10.1515/REVNEURO.2005.16.2.137
  • Speretta, E., Jahn, T. R., Tartaglia, G. G., Favrin, G., Barros, T. P., Imarisio, S., … Dobson, C. M. (2012). Expression in Drosophila of tandem amyloid β peptides provides insights into links between aggregation and neurotoxicity. The Journal of Biological Chemistry, 287, 20748–20754. doi:10.1074/jbc.M112.350124
  • Sugie, A., Marchetti, G., & Tavosanis, G. (2018). Structural aspects of plasticity in the nervous system of Drosophila. Neural Development, 13, 14. doi:10.1186/s13064-018-0111-z
  • Sung, P., & Klein, H. (2006). Mechanism of homologous recombination: Mediators and helicases take on regulatory functions. Nature Reviews: Molecular Cell Biology, 7, 739–750. doi:10.1038/nrm2008
  • Szybińska, A., & Leśniak, W. (2017). P53 dysfunction in neurodegenerative diseases: The cause or effect of pathological changes? Aging and Disease, 8, 506–518. doi:10.14336/AD.2016.1120
  • Voigt, A., Herholz, D., Fiesel, F. C., Kaur, K., Müller, D., Karsten, P., … Schulz, J. B. (2010). TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS One, 5, e12247. doi:10.1371/journal.pone.0012247
  • Willenbrink, A. M., Gronauer, M. K., Toebben, L. F., Kick, D. R., Wells, M., & Zhang, B. (2016). The Hillary Climber trumps manual testing: An automatic system for studying Drosophila climbing. Journal of Neurogenetics, 30, 205–211. doi:10.1080/01677063.2016.1255211
  • Wood, A., Krogan, N. J., Dover, J., Schneider, J., Heidt, J., Boateng, M. A., … Shilatifard, A. (2003). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Molecular Cell, 11, 267–274. doi:10.1016/S1097-2765(02)00802-X