787
Views
4
CrossRef citations to date
0
Altmetric
Section 2: Nervous system development

C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density

ORCID Icon, , , & ORCID Icon
Pages 298-306 | Received 05 Nov 2019, Accepted 04 Feb 2020, Published online: 04 May 2020

References

  • Albert, M.L., Kim, J.I., & Birge, R.B. (2000). alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nature Cell Biology, 2, 899–905. doi:10.1038/35046549
  • Allen, N.J. (2013). Role of glia in developmental synapse formation. Current Opinion in Neurobiology, 23, 1027–1033. doi:10.1016/j.conb.2013.06.004
  • Allen, N.J., & Eroglu, C. (2017). Cell biology of astrocyte-synapse interactions. Neuron, 96, 697–708. doi:10.1016/j.neuron.2017.09.056
  • Altun-Gultekin, Z., Andachi, Y., Tsalik, E.L., Pilgrim, D., Kohara, Y., & Hobert, O. (2001). A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development (Cambridge, England), 128, 1951–1969.
  • Awasaki, T., Tatsumi, R., Takahashi, K., Arai, K., Nakanishi, Y., Ueda, R., & Ito, K. (2006). Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron, 50, 855–867. doi:10.1016/j.neuron.2006.04.027
  • Bangs, P., Franc, N., & White, K. (2000). Molecular mechanisms of cell death and phagocytosis in Drosophila. Cell Death & Differentiation, 7, 1027–1034. doi:10.1038/sj.cdd.4400754
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
  • Cao, J., Packer, J.S., Ramani, V., Cusanovich, D.A., Huynh, C., Daza, R., … Shendure, J. (2017). Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 357, 661–667. doi:10.1126/science.aam8940
  • Cherra, S.J., 3rd, & Jin, Y. (2015). Advances in synapse formation: Forging connections in the worm. Wiley Interdisciplinary Reviews: Developmental Biology, 4, 85–97. doi:10.1002/wdev.165
  • Cherra, S.J., 3rd, & Jin, Y. (2016). A two-immunoglobulin-domain transmembrane protein mediates an epidermal-neuronal interaction to maintain synapse density. Neuron, 89, 325–336. doi:10.1016/j.neuron.2015.12.024
  • Cho, S.H., Kim, J.Y., Simons, D.L., Song, J.Y., Le, J.H., Swindell, E.C., … Kim, S. (2012). Genetic ablation of Pals1 in retinal progenitor cells models the retinal pathology of Leber congenital amaurosis. Human Molecular Genetics, 21, 2663–2676. doi:10.1093/hmg/dds091
  • Chung, W.S., Allen, N.J., & Eroglu, C. (2015). Astrocytes control synapse formation, function, and elimination. Cold Spring Harbor Perspectives in Biology, 7, a020370. doi:10.1101/cshperspect.a020370
  • Chung, W.S., Clarke, L.E., Wang, G.X., Stafford, B.K., Sher, A., Chakraborty, C., … Barres, B.A. (2013). Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature, 504, 394–400. doi:10.1038/nature12776
  • Clarke, L.E., Liddelow, S.A., Chakraborty, C., Munch, A.E., Heiman, M., & Barres, B.A. (2018). Normal aging induces A1-like astrocyte reactivity. Proceedings of the National Academy of Sciences of the United States of America, 115, E1896–E1905. doi:10.1073/pnas.1800165115
  • Corty, M.M., & Freeman, M.R. (2013). Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity. Journal of Cell Biology, 203, 395–405. doi:10.1083/jcb.201306099
  • de Wit, J., & Ghosh, A. (2016). Specification of synaptic connectivity by cell surface interactions. Nature Reviews Neuroscience, 17, 4–35. doi:10.1038/nrn.2015.3
  • Duerr, J.S., Frisby, D.L., Gaskin, J., Duke, A., Asermely, K., Huddleston, D., … Rand, J.B. (1999). The cat-1 gene of Caenorhabditis elegans encodes a vesicular monoamine transporter required for specific monoamine-dependent behaviors. The Journal of Neuroscience, 19, 72–84. doi:10.1523/JNEUROSCI.19-01-00072.1999
  • El-Husseini, A.E., Topinka, J.R., Lehrer-Graiwer, J.E., Firestein, B.L., Craven, S.E., Aoki, C., & Bredt, D.S. (2000). Ion channel clustering by membrane-associated guanylate kinases. Differential regulation by N-terminal lipid and metal binding motifs. Journal of Biological Chemistry, 275, 23904–23910. doi:10.1074/jbc.M909919199
  • Frokjaer-Jensen, C., Davis, M.W., Ailion, M., & Jorgensen, E.M. (2012). Improved Mos1-mediated transgenesis in C. elegans. Nature Methods, 9, 117–118. doi:10.1038/nmeth.1865
  • Fuentes-Medel, Y., Logan, M.A., Ashley, J., Ataman, B., Budnik, V., & Freeman, M.R. (2009). Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biology, 7, e1000184. doi:10.1371/journal.pbio.1000184
  • Hedgecock, E.M., Sulston, J.E., & Thomson, J.N. (1983). Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science, 220, 1277–1279. doi:10.1126/science.6857247
  • Hobert, O. (2013). The neuronal genome of Caenorhabditis elegans. WormBook, Aug 13:1–106. doi:10.1895/wormbook.1.161.1
  • Jospin, M., Qi, Y.B., Stawicki, T.M., Boulin, T., Schuske, K.R., Horvitz, H.R., … Jin, Y. (2009). A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biology, 7, e1000265. doi:10.1371/journal.pbio.1000265
  • Lee, R.Y.N., Howe, K.L., Harris, T.W., Arnaboldi, V., Cain, S., Chan, J., … Sternberg, P.W. (2018). WormBase 2017: molting into a new stage. Nucleic Acids Research, 46, D869–D874. doi:10.1093/nar/gkx998
  • MacDonald, J.M., Beach, M.G., Porpiglia, E., Sheehan, A.E., Watts, R.J., & Freeman, M.R. (2006). The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron, 50, 869–881. doi:10.1016/j.neuron.2006.04.028
  • Mangahas, P.M., & Zhou, Z. (2005). Clearance of apoptotic cells in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 16, 295–306. doi:10.1016/j.semcdb.2004.12.005
  • Mello, C.C., Kramer, J.M., Stinchcomb, D., & Ambros, V. (1991). Efficient gene transfer in C. elegans: Extrachromosomal maintenance and integration of transforming sequences. The EMBO Journal, 10, 3959–3970. doi:10.1002/j.1460-2075.1991.tb04966.x
  • Mi, R., Sia, G.M., Rosen, K., Tang, X., Moghekar, A., Black, J.L., McEnery, M., Huganir, R.L., & O’Brien, R.J. (2004). AMPA receptor-dependent clustering of synaptic NMDA receptors is mediated by Stargazin and NR2A/B in spinal neurons and hippocampal interneurons. Neuron, 44, 335–349. doi:10.1016/j.neuron.2004.09.029
  • Okkema, P.G., Harrison, S.W., Plunger, V., Aryana, A., & Fire, A. (1993). Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics, 135, 385–404.
  • Ozcelik, M., Cotter, L., Jacob, C., Pereira, J.A., Relvas, J.B., Suter, U., & Tricaud, N. (2010). Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. Journal of Neuroscience, 30, 4120–4131. doi:10.1523/JNEUROSCI.5185-09.2010
  • Park, B., Alves, C.H., Lundvig, D.M., Tanimoto, N., Beck, S.C., Huber, G., … Wijnholds, J. (2011). PALS1 is essential for retinal pigment epithelium structure and neural retina stratification. Journal of Neuroscience, 31, 17230–17241. doi:10.1523/JNEUROSCI.4430-11.2011
  • Park, J.Y., Hughes, L.J., Moon, U.Y., Park, R., Kim, S.B., Tran, K., … Kim, S. (2016). The apical complex protein Pals1 is required to maintain cerebellar progenitor cells in a proliferative state. Development, 143, 133–146. doi:10.1242/dev.124180
  • Rand, J.B. (2007). Acetylcholine. WormBook, Jan 30; 1–21.
  • Rasmussen, J.P., Sack, G.S., Martin, S.M., & Sagasti, A. (2015). Vertebrate epidermal cells are broad-specificity phagocytes that clear sensory axon debris. The Journal of Neuroscience, 35, 559–570. doi:10.1523/JNEUROSCI.3613-14.2015
  • Shu, X., Lev-Ram, V., Deerinck, T.J., Qi, Y., Ramko, E.B., Davidson, M.W., … Tsien, R.Y. (2011). A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biology, 9, e1001041. doi:10.1371/journal.pbio.1001041
  • Stevens, B., Allen, N.J., Vazquez, L.E., Howell, G.R., Christopherson, K.S., Nouri, N., … Barres, B.A. (2007). The classical complement cascade mediates CNS synapse elimination. Cell, 131, 1164–1178. doi:10.1016/j.cell.2007.10.036
  • Sudhof, T.C. (2018). Towards an understanding of synapse formation. Neuron, 100, 276–293. doi:10.1016/j.neuron.2018.09.040
  • Takayanagi-Kiya, S., Zhou, K., & Jin, Y. (2016). Release-dependent feedback inhibition by a presynaptically localized ligand-gated anion channel. Elife, 5, pii: e21734. doi:10.7554/eLife.21734
  • Tepass, U. (2012). The apical polarity protein network in Drosophila epithelial cells: Regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annual Review of Cell and Developmental Biology, 28, 655–685. doi:10.1146/annurev-cellbio-092910-154033
  • Thierry-Mieg, D., & Thierry-Mieg, J. (2006). AceView: A comprehensive cDNA-supported gene and transcripts annotation. Genome Biology, 7, S12–S14. doi:10.1186/gb-2006-7-s1-s12
  • van Rossum, A.G., Aartsen, W.M., Meuleman, J., Klooster, J., Malysheva, A., Versteeg, I., … Wijnholds, J. (2006). Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Muller glia cells. Human Molecular Genetics, 15, 2659–2672. doi:10.1093/hmg/ddl194
  • Wang, S.H., Celic, I., Choi, S.Y., Riccomagno, M., Wang, Q., Sun, L.O., … Kolodkin, A.L. (2014). Dlg5 regulates dendritic spine formation and synaptogenesis by controlling subcellular N-cadherin localization. The Journal of Neuroscience, 34, 12745–12761. doi:10.1523/JNEUROSCI.1280-14.2014
  • Yu, X., Lu, N., & Zhou, Z. (2008). Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biology, 6, e61. doi:10.1371/journal.pbio.0060061
  • Zhang, Y., Chen, K., Sloan, S.A., Bennett, M.L., Scholze, A.R., O’Keeffe, S., … Wu, J.Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34, 11929–11947. doi:10.1523/JNEUROSCI.1860-14.2014
  • Zhou, Z., Hartwieg, E., & Horvitz, H.R. (2001). CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell, 104, 43–56. doi:10.1016/S0092-8674(01)00190-8
  • Zhu, J., Shang, Y., & Zhang, M. (2016). Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nature Reviews Neuroscience, 17, 209–223. doi:10.1038/nrn.2016.18
  • Zollinger, D.R., Chang, K.J., Baalman, K., Kim, S., & Rasband, M.N. (2015). The polarity protein Pals1 regulates radial sorting of axons. The Journal of Neuroscience, 35, 10474–10484. doi:10.1523/JNEUROSCI.1593-15.2015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.