1,596
Views
19
CrossRef citations to date
0
Altmetric
Section 3: From inputs to outputs

Temperature signaling underlying thermotaxis and cold tolerance in Caenorhabditis elegans

, & ORCID Icon
Pages 351-362 | Received 20 Nov 2019, Accepted 20 Feb 2020, Published online: 21 Apr 2020

References

  • Albrecht, D.R., & Bargmann, C.I. (2011). High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nature Methods, 8, 599–605. doi:10.1038/nmeth.1630
  • Ali, F., & Wharton, D.A. (2013). Cold tolerance abilities of two entomopathogenic nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. Cryobiology, 66(1), 24–29. doi:10.1016/j.cryobiol.2012.10.004
  • Anderson, R.V., & Coleman, D.C. (1982). Nematode temperature responses: A niche dimension in populations of bacterial-feeding nematodes. Journal of Nematology, 14(1), 69–76.
  • Aoki, I., Shiota, M., Nakano, S., & Mori, I. (2019). cGMP dynamics underlie thermosensation in C. elegans. bioRxiv. 764571.
  • Aoki, I., Tateyama, M., Shimomura, T., Ihara, K., Kubo, Y., Nakano, S., & Mori, I. (2018). SLO potassium channels antagonize premature decision making in. Communications Biology, 1(1), 123. doi:10.1038/s42003-018-0124-5
  • Bargmann, C.I., Hartwieg, E., & Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 74, 515–527. doi:10.1016/0092-8674(93)80053-H
  • Bargmann, C.I., & Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7, 729–742. doi:10.1016/0896-6273(91)90276-6
  • Beverly, M., Anbil, S., & Sengupta, P. (2011). Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. Journal of Neuroscience, 31, 11718–11727. doi:10.1523/JNEUROSCI.1098-11.2011
  • Biron, D., Shibuya, M., Gabel, C., Wasserman, S.M., Clark, D.A., Brown, A., … Samuel, A.D.T. (2006). A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans. Nature Neuroscience, 9, 1499–1505. doi:10.1038/nn1796
  • Biron, D., Wasserman, S., Thomas, J.H., Samuel, A.D., & Sengupta, P. (2008). An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proceedings of the National Academy of Sciences of the United States of America, 105, 11002–11007. doi:10.1073/pnas.0805004105
  • Bodhicharla, R., Devkota, R., Ruiz, M., & Pilon, M. (2018). Membrane fluidity is regulated cell nonautonomously by Caenorhabditis elegans PAQR-2 and its mammalian homolog adipoR2. Genetics, 210(1), 189–201. doi:10.1534/genetics.118.301272
  • Bryant, A.S., Ruiz, F., Gang, S.S., Castelletto, M.L., Lopez, J.B., & Hallem, E.A. (2018). A critical role for thermosensation in host seeking by skin-penetrating nematodes. Current Biology, 28, 2338–2347.e2336.
  • Burgoyne, R.D. (2007). Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signalling. Nature Reviews Neuroscience, 8, 182–193. doi:10.1038/nrn2093
  • Carlsson, A.M., Irvine, R.J., Wilson, K., & Coulson, S.J. (2013). Adaptations to the Arctic: Low-temperature development and cold tolerance in the free-living stages of a parasitic nematode from Svalbard. Polar Biology, 36, 997–1005. doi:10.1007/s00300-013-1323-7
  • Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., & Julius, D. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 389, 816–824. doi:10.1038/39807
  • Chatzigeorgiou, M., Yoo, S., Watson, J.D., Lee, W.-H., Spencer, W.C., Kindt, K.S., … Schafer, W.R. (2010). Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nature Neuroscience, 13, 861–868. doi:10.1038/nn.2581
  • Chi, C.A., Clark, D.A., Lee, S., Biron, D., Luo, L., Gabel, C.V., … Samuel, A.D.T. (2007). Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans. Journal of Experimental Biology, 210, 4043–4052. doi:10.1242/jeb.006551
  • Clapham, D.E., & Miller, C. (2011). A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proceedings of the National Academy of Sciences of the United States of America, 108, 19492–19497. doi:10.1073/pnas.1117485108
  • Clark, D.A., Biron, D., Sengupta, P., & Samuel, A.D. (2006). The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans. Journal of Neuroscience, 26, 7444–7451. doi:10.1523/JNEUROSCI.1137-06.2006
  • Clark, D.A., Gabel, C.V., Lee, T.M., & Samuel, A.D. (2007). Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans. Journal of Neurophysiology, 97, 1903–1910. doi:10.1152/jn.00892.2006
  • Coburn, C.M., Mori, I., Ohshima, Y., & Bargmann, C.I. (1998). A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: A distinct pathway for maintenance of sensory axon structure. Development (Cambridge, England), 125, 249–258.
  • Devkota, R., Svensk, E., Ruiz, M., Ståhlman, M., Borén, J., & Pilon, M. (2017). The adiponectin receptor AdipoR2 and its Caenorhabditis elegans homolog PAQR-2 prevent membrane rigidification by exogenous saturated fatty acids. PLoS Genetics, 13, e1007004. doi:10.1371/journal.pgen.1007004
  • Doroquez, D.B., Berciu, C., Anderson, J.R., Sengupta, P., & Nicastro, D. (2014). A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife, 3, e01948. doi:10.7554/eLife.01948
  • Dusenbery, D.B., Sheridan, R.E., & Russell, R.L. (1975). Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics, 80, 297–309.
  • Exil, V.J., Silva Avila, D., Benedetto, A., Exil, E.A., Adams, M.R., Au, C., & Aschner, M. (2010). Stressed-induced TMEM135 protein is part of a conserved genetic network involved in fat storage and longevity regulation in Caenorhabditis elegans. PLOS One, 5(12), e14228. doi:10.1371/journal.pone.0014228
  • Fenk, L.A., & de Bono, M. (2017). Memory of recent oxygen experience switches pheromone valence in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 114, 4195–4200. doi:10.1073/pnas.1618934114
  • Finka, A., Cuendet, A.F., Maathuis, F.J., Saidi, Y., & Goloubinoff, P. (2012). Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. The Plant Cell, 24 , 3333–3348. doi:10.1105/tpc.112.095844
  • Garrity, P.A., Goodman, M.B., Samuel, A.D., & Sengupta, P. (2010). Running hot and cold: Behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes and Development, 24, 2365–2382. doi:10.1101/gad.1953710
  • Glauser, D.A., Chen, W.C., Agin, R., MacInnis, B.L., Hellman, A.B., Garrity, P.A., … Goodman, M.B. (2011). Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics, 188(1), 91–103. doi:10.1534/genetics.111.127100
  • Glauser, D.A., & Goodman, M.B. (2016). Molecules empowering animals to sense and respond to temperature in changing environments. Current Opinion in Neurobiology, 41, 92–98. doi:10.1016/j.conb.2016.09.006
  • Gong, J., Liu, J., Ronan, E.A., He, F., Cai, W., Fatima, M., … Xu, X.Z.S. (2019). A cold-sensing receptor encoded by a glutamate receptor gene. Cell, 178, 1375–1386. doi:10.1016/j.cell.2019.07.034
  • Goto, M., Takahashi, K., & Suzuki, C. (1993). Ecological study on the barnyard grass stem borer, Enosima leucotaeniella (RAGONOT) (Lepidoptera: Pyralidae): VIII. Seasonal changes of carbohydrate contents in overwintering larvae. Applied Entomology and Zoology, 28, 417–421. doi:10.1303/aez.28.417
  • Gray, J.M., Hill, J.J., & Bargmann, C.I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102, 3184–3191.
  • Hawk, J.D., Calvo, A.C., Liu, P., Almoril-Porras, A., Aljobeh, A., Torruella-Suárez, M.L., … Colón-Ramos, D.A. (2018). Integration of plasticity mechanisms within a single sensory neuron of C. elegans actuates a memory. Neuron, 97, 356–367.e354. doi:10.1016/j.neuron.2017.12.027
  • Hedgecock, E.M., & Russell, R.L. (1975). Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 72, 4061–4065. doi:10.1073/pnas.72.10.4061
  • Hoffstaetter, L.J., Bagriantsev, S.N., & Gracheva, E.O. (2018). TRPs et al.: A molecular toolkit for thermosensory adaptations. Pflügers Archiv – European Journal of Physiology, 470, 745–759. doi:10.1007/s00424-018-2120-5
  • Inada, H., Ito, H., Satterlee, J., Sengupta, P., Matsumoto, K., & Mori, I. (2006). Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics, 172, 2239–2252. doi:10.1534/genetics.105.050013
  • Jurado, P., Kodama, E., Tanizawa, Y., & Mori, I. (2010). Distinct thermal migration behaviors in response to different thermal gradients in Caenorhabditis elegans. Genes, Brain and Behavior, 9(1), 120–127.
  • Kage-Nakadai, E., Ohta, A., Ujisawa, T., Sun, S., Nishikawa, Y., Kuhara, A., & Mitani, S. (2016). Caenorhabditis elegans homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance. Genes to Cells, 21, 936–948. doi:10.1111/gtc.12394
  • Kimura, K.D., Miyawaki, A., Matsumoto, K., & Mori, I. (2004). The C. elegans thermosensory neuron AFD responds to warming. Current Biology, 14, 1291–1295. doi:10.1016/j.cub.2004.06.060
  • Klapper, M., Findeis, D., Koefeler, H., & Doring, F. (2016). Methyl group donors abrogate adaptive responses to dietary restriction in C. elegans. Genes and Nutrition, 11(1), 4. doi:10.1186/s12263-016-0522-4
  • Kobayashi, K., Nakano, S., Amano, M., Tsuboi, D., Nishioka, T., Ikeda, S., … Mori, I. (2016). Single-cell memory regulates a neural circuit for sensory behavior. Cell Reports, 14(1), 11–21. doi:10.1016/j.celrep.2015.11.064
  • Kodama, E., Kuhara, A., Mohri-Shiomi, A., Kimura, K.D., Okumura, M., Tomioka, M., … Mori, I. (2006). Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes and Development, 20, 2955–2960. doi:10.1101/gad.1479906
  • Kohshima, S. (1984). A novel cold-tolerant insect found in a Himalayan glacier. Nature, 310, 225–227. doi:10.1038/310225a0
  • Kuhara, A., Okumura, M., Kimata, T., Tanizawa, Y., Takano, R., Kimura, K.D., … Mori, I. (2008). Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science, 320, 803–807. doi:10.1126/science.1148922
  • Liu, F., Xiao, Y., Ji, X.L., Zhang, K.Q., & Zou, C.G. (2017). The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Scientific Reports, 7(1), 638. doi:10.1038/s41598-017-00630-w[PMC].
  • Liu, J., Ward, A., Gao, J., Dong, Y., Nishio, N., Inada, H., … Xu, X.Z.S. (2010). C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nature Neuroscience, 13, 715–722. doi:10.1038/nn.2540
  • Liu, S., Schulze, E., & Baumeister, R. (2012). Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLOS One, 7, e32360. doi:10.1371/journal.pone.0032360
  • Luo, L., Clark, D.A., Biron, D., Mahadevan, L., & Samuel, A.D. (2006). Sensorimotor control during isothermal tracking in Caenorhabditis elegans. Journal of Experimental Biology, 209, 4652–4662. doi:10.1242/jeb.02590
  • Luo, L., Cook, N., Venkatachalam, V., Martinez-Velazquez, L.A., Zhang, X., Calvo, A.C., … Samuel, A.D.T. (2014). Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 111, 2776–2781. doi:10.1073/pnas.1315205111
  • Maruyama, I.N. (2016). Receptor guanylyl cyclases in sensory processing. Frontiers in Endocrinology, 7, 173. doi:10.3389/fendo.2016.00173[PMC].
  • Meng, L., Mulcahy, B., Cook, S.J., Neubauer, M., Wan, A., Jin, Y., & Yan, D. (2015). The cell death pathway regulates synapse elimination through cleavage of gelsolin in Caenorhabditis elegans neurons. Cell Reports, 11(11), 1737–1748. doi:10.1016/j.celrep.2015.05.031
  • Metaxakis, A., Petratou, D., & Tavernarakis, N. (2018). Multimodal sensory processing in Caenorhabditis elegans. Open Biology, 8, 180049.
  • Mohammadi, A., Byrne Rodgers, J., Kotera, I., & Ryu, W.S. (2013). Behavioral response of Caenorhabditis elegans to localized thermal stimuli. BMC Neuroscience, 14(1), 66. doi:10.1186/1471-2202-14-66
  • Mohri, A., Kodama, E., Kimura, K.D., Koike, M., Mizuno, T., & Mori, I. (2005). Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics, 169, 1437–1450. doi:10.1534/genetics.104.036111
  • Mori, I., & Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 376, 344–348. doi:10.1038/376344a0
  • Murray, P., Hayward, S.A., Govan, G.G., Gracey, A.Y., & Cossins, A.R. (2007). An explicit test of the phospholipid saturation hypothesis of acquired cold tolerance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 104, 5489–5494. doi:10.1073/pnas.0609590104
  • Narayan, A., Laurent, G., & Sternberg, P.W. (2011). Transfer characteristics of a thermosensory synapse in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 108, 9667–9672. doi:10.1073/pnas.1106617108
  • Nguyen, P.A., Liou, W., Hall, D.H., & Leroux, M.R. (2014). Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. Journal of Cell Science, 127, 5317–5330.
  • Ohnishi, N., Kuhara, A., Nakamura, F., Okochi, Y., & Mori, I. (2011). Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans. The EMBO Journal, 30, 1376–1388. doi:10.1038/emboj.2011.13
  • Ohta, A., Ujisawa, T., Sonoda, S., & Kuhara, A. (2014). Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nature Communications, 5(1), 4412. doi:10.1038/ncomms5412
  • Okahata, M., Ohta, A., Mizutani, H., Minakuchi, Y., Toyoda, A., & Kuhara, A. (2016). Natural variations of cold tolerance and temperature acclimation in Caenorhabditis elegans. Journal of Comparative Physiology B, 186, 985–998. doi:10.1007/s00360-016-1011-3
  • Okahata, M., Wei, A.D., Ohta, A., & Kuhara, A. (2019). Cold acclimation via the KQT-2 potassium channel is modulated by oxygen in Caenorhabditis elegans. Science Advances, 5, eaav3631. doi:10.1126/sciadv.aav3631
  • Okochi, Y., Kimura, K.D., Ohta, A., & Mori, I. (2005). Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. The EMBO Journal, 24, 2127–2137.
  • Omori, K., & Kotera, J. (2007). Overview of PDEs and their regulation. Circulation Research, 100, 309–327.
  • Ouellette, M.H., Desrochers, M.J., Gheta, I., Ramos, R., & Hendricks, M. (2018). A gate-and-switch model for head orientation behaviors in Caenorhabditis elegans. eNeuro, 5, doi:10.1523/ENEURO.0121-18.2018
  • Palkar, R., Lippoldt, E.K., & McKemy, D.D. (2015). The molecular and cellular basis of thermosensation in mammals. Current Opinion in Neurobiology, 34, 14–19.
  • Patapoutian, A., Peier, A.M., Story, G.M., & Viswanath, V. (2003). ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nature Reviews Neuroscience, 4, 529–539. doi:10.1038/nrn1141
  • Perkins, L.A., Hedgecock, E.M., Thomson, J.N., & Culotti, J.G. (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental Biology, 117, 456–487. doi:10.1016/0012-1606(86)90314-3
  • Pierce-Shimomura, J.T., Morse, T.M., & Lockery, S.R. (1999). The fundamental role of pirouettes in Caenorhabditis elegans chemotaxis. The Journal of Neuroscience, 19, 9557–9569. doi:10.1523/JNEUROSCI.19-21-09557.1999
  • Pilon, M., & Svensk, E. (2013). PAQR-2 may be a regulator of membrane fluidity during cold adaptation. Worm, 2, e27123. doi:10.4161/worm.27123
  • Potter, L.R. (2011). Guanylyl cyclase structure, function and regulation. Cellular Signalling, 23, 1921–1926. doi:10.1016/j.cellsig.2011.09.001
  • Ramot, D., MacInnis, B.L., & Goodman, M.B. (2008). Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nature Neuroscience, 11, 908–915. doi:10.1038/nn.2157
  • Ramot, D., MacInnis, B.L., Lee, H.C., & Goodman, M.B. (2008). Thermotaxis is a robust mechanism for thermoregulation in Caenorhabditis elegans nematodes. Journal of Neuroscience, 28, 12546–12557. doi:10.1523/JNEUROSCI.2857-08.2008
  • Robinson, J.D., & Powell, J.R. (2016). Long-term recovery from acute cold shock in Caenorhabditis elegans. BMC Cell Biology, 17, 2. doi:10.1186/s12860-015-0079-z
  • Ryu, W.S., & Samuel, A.D. (2002). Thermotaxis in Caenorhabditis elegans analyzed by measuring responses to defined thermal stimuli. The Journal of Neuroscience, 22, 5727–5733. doi:10.1523/JNEUROSCI.22-13-05727.2002
  • Sakurai, M. (2012). The functional mechanism of trehalose as a stress protectant from a viewpoint of its hydration property. Cryobiology and Cryotechnology, 58(1), 41–51.
  • Satterlee, J.S., Sasakura, H., Kuhara, A., Berkeley, M., Mori, I., & Sengupta, P. (2001). Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron, 31, 943–956. doi:10.1016/s0896-6273(01)00431-7
  • Savory, F.R., Sait, S.M., & Hope, I.A. (2011). DAF-16 and Delta9 desaturase genes promote cold tolerance in long-lived Caenorhabditis elegans age-1 mutants. PLOS One., 6, e24550. doi:10.1371/journal.pone.0024550
  • Schafer, W.R. (2012). Tackling thermosensation with multidimensional phenotyping. BMC Biology, 10(1), 91. doi:10.1186/1741-7007-10-91
  • Seybold, A.C., Wharton, D.A., Thorne, M.A.S., & Marshall, C.J. (2017). Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Panagrolaimus sp. Biology Open, 6, 1953–1959. doi:10.1242/bio.023341
  • Shaham, S. (2015). Glial development and function in the nervous system of Caenorhabditis elegans. Cold Spring Harbor Perspectives in Biology, 7, a020578. doi:10.1101/cshperspect.a020578
  • Singhvi, A., Liu, B., Friedman, C.J., Fong, J., Lu, Y., Huang, X.Y., & Shaham, S. (2016). A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell, 165, 936–948. doi:10.1016/j.cell.2016.03.026
  • Sonoda, S., Ohta, A., Maruo, A., Ujisawa, T., & Kuhara, A. (2016). Sperm affects head sensory neuron in temperature tolerance of Caenorhabditis elegans. Cell Reports, 16(1), 56–65. doi:10.1016/j.celrep.2016.05.078
  • Sugi, T., Nishida, Y., & Mori, I. (2011). Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nature Neuroscience, 14, 984–992. doi:10.1038/nn.2854
  • Svensk, E., Devkota, R., Ståhlman, M., Ranji, P., Rauthan, M., Magnusson, F., … Pilon, M. (2016). Caenorhabditis elegans PAQR-2 and IGLR-2 protect against glucose toxicity by modulating membrane lipid composition. PLOS Genetics, 12, e1005982. doi:10.1371/journal.pgen.1005982
  • Svensk, E., Ståhlman, M., Andersson, C.H., Johansson, M., Borén, J., & Pilon, M. (2013). PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLOS Genetics, 9, e1003801. doi:10.1371/journal.pgen.1003801
  • Takagaki, N., Ohta, A., Ohnishi, K., Kawanabe A., Minakuchi, Y., Toyoda, A., Fujiwara, Y., & Kuhara, A. (2020). The mechanoreceptor DEG-1 regulates cold tolerance in Caenorhabditis elegans. EMBO reports, e48671, 1–14.
  • Takeishi, A., Yu, Y.V., Hapiak, V.M., Bell, H.W., O’Leary, T., & Sengupta, P. (2016). Receptor-type guanylyl cyclases confer thermosensory responses in C. elegans. Neuron, 90, 235–244. doi:10.1016/j.neuron.2016.03.002
  • Tanizawa, Y., Kuhara, A., Inada, H., Kodama, E., Mizuno, T., & Mori, I. (2006). Inositol monophosphatase regulates localization of synaptic components and behavior in the mature nervous system of C. elegans. Genes and Development, 20, 3296–3310. doi:10.1101/gad.1497806
  • Tobin, D.M., Madsen, D.M., Kahn-Kirby, A., Peckol, E.L., Moulder, G., Barstead, R., … Bargmann, C.I. (2002). Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron, 35, 307–318. doi:10.1016/S0896-6273(02)00757-2
  • Tsukada, Y., Yamao, M., Naoki, H., Shimowada, T., Ohnishi, N., Kuhara, A., … Mori, I. (2016). Reconstruction of spatial thermal gradient encoded in thermosensory neuron AFD in Caenorhabditis elegans. The Journal of Neuroscience, 36, 2571–2581. doi:10.1523/JNEUROSCI.2837-15.2016
  • Ujisawa, T., Ohta, A., Ii, T., Minakuchi, Y., Toyoda, A., Ii, M., & Kuhara, A. (2018). Endoribonuclease ENDU-2 regulates multiple traits including cold tolerance via cell autonomous and nonautonomous controls in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 115, 8823–8828. doi:10.1073/pnas.1808634115
  • Ujisawa T., Ohta A., Okahata M., Sonoda S., Kuhara A. (2014). Cold tolerance assay for studying cultivation-temperature-dependent cold habituation in C. elegans. Protocol Exchange, doi:10.1038/protex.2014.032
  • Ujisawa, T., Ohta, A., Uda-Yagi, M., & Kuhara, A. (2016). Diverse regulation of temperature sensation by trimeric G-protein signaling in Caenorhabditis elegans. PLOS One, 11(10), e0165518, 1–20. doi:10.1371/journal.pone.0165518
  • Venkatachalam, V., Ji, N., Wang, X., Clark, C., Mitchell, J.K., Klein, M., … Samuel, A.D.T. (2016). Pan-neuronal imaging in roaming Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 113, E1082–E1088. doi:10.1073/pnas.1507109113
  • Voets, T. (2014). TRP channels and thermosensation. Handbook of Experimental Pharmacology, 223, 729–741. doi:10.1007/978-3-319-05161-1_1
  • Wang, D., O’Halloran, D., & Goodman, M.B. (2013). GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis. The Journal of General Physiology, 142, 437–449. doi:10.1085/jgp.201310959
  • Wasserman, S.M., Beverly, M., Bell, H.W., & Sengupta, P. (2011). Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling. Current Biology, 21, 353–362. doi:10.1016/j.cub.2011.01.053
  • Wharton, D., & Ferns, D. (1995). Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. The Journal of Experimental Biology, 198, 1381–1387.
  • Wharton, D.A., & Brown, I.M. (1991). Cold-tolerance mechanisms of the Antarctic nematode Panagrolaimus davidi. Journal of Experimental Biology, 155(1), 629–641. doi:10.1242/jeb.00083
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314, 1–340. doi:10.1098/rstb.1986.0056
  • Wittenburg, N., & Baumeister, R. (1999). Thermal avoidance in Caenorhabditis elegans: An approach to the study of nociception. Proceedings of the National Academy of Sciences of the United States of America, 96, 10477–10482. doi:10.1073/pnas.96.18.10477
  • Woldemariam, S., Nagpal, J., Hill, T., Li, J., Schneider, M.W., Shankar, R., … L'Etoile, N. (2019). Using a robust and sensitive GFP-based cGMP sensor for real-time imaging in intact Caenorhabditis elegans. Genetics, 213(1), 59–77. doi:10.1534/genetics.119.302392
  • Wu, X., Zhu, X., Wang, Y., Liu, X., Chen, L., & Duan, Y. (2018). The cold tolerance of the northern root-knot nematode, Meloidogyne hapla. PLOS One, 13(1), e0190531. doi:10.1371/journal.pone.0190531
  • Xiao, R., Zhang, B., Dong, Y., Gong, J., Xu, T., Liu, J., & Xu, X.Z. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell, 152, 806–817. doi:10.1016/j.cell.2013.01.020
  • Yamada, Y., & Ohshima, Y. (2003). Distribution and movement of Caenorhabditis elegans on a thermal gradient. Journal of Experimental Biology, 206, 2581–2593. doi:10.1242/jeb.00477
  • Yoshida, A., Nakano, S., Suzuki, T., Ihara, K., Higashiyama, T., & Mori, I. (2016). A glial K(+)/Cl(–) cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons. Genes, Brain and Behavior, 15, 429–440. doi:10.1111/gbb.12260
  • Yu, S., Avery, L., Baude, E., & Garbers, D.L. (1997). Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proceedings of the National Academy of Sciences of the United States of America, 94, 3384–3387. doi:10.1073/pnas.94.7.3384
  • Yu, Y.V., Bell, H.W., Glauser, D., Van Hooser, S.D., Goodman, M.B., & Sengupta, P. (2014). CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron. Neuron, 84, 919–926. doi:10.1016/j.neuron.2014.10.046
  • Zariwala, H.A., Miller, A.C., Faumont, S., & Lockery, S.R. (2003). Step response analysis of thermotaxis in Caenorhabditis elegans. The Journal of Neuroscience, 23, 4369–4377. doi:10.1523/JNEUROSCI.23-10-04369.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.