885
Views
6
CrossRef citations to date
0
Altmetric
Section 5: Quiescence and sleep

Cellular damage, including wounding, drives C. elegans stress-induced sleep

, , & ORCID Icon
Pages 430-439 | Received 13 Jan 2020, Accepted 02 Apr 2020, Published online: 02 May 2020

References

  • Anafi, R.C., Kayser, M.S., & Raizen, D.M. (2019). Exploring phylogeny to find the function of sleep. Nature Reviews Neuroscience, 20, 109–116. doi:10.1038/s41583-018-0098-9
  • Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P.S., & Curtis, R. (2004). The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes & Development, 18, 3004–3009. doi:10.1101/gad.1255404
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
  • Budden, T., & Bowden, N.A. (2013). The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. International Journal of Molecular Sciences, 14, 1132–1151. doi:10.3390/ijms14011132
  • Chatzigeorgiou, M., Bang, S., Hwang, S.W., & Schafer, W.R. (2013). Tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature, 494, 95–99. doi:10.1038/nature11845
  • Chikahisa, S., & Séi, H. (2011). The role of ATP in sleep regulation. Frontiers in Neurology, 2, 87. doi: 10.3389/fneur.2011.00087
  • Cirelli, C., & Tononi, G. (2008). Is sleep essential? PLoS Biology, 6, e216. doi:10.1371/journal.pbio.0060216
  • Colbert, H.A., Smith, T.L., & Bargmann, C.I. (1997). OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. The Journal of Neuroscience, 17, 8259–8269. doi:10.1523/JNEUROSCI.17-21-08259.1997
  • DeBardeleben, H.K., Lopes, L.E., Nessel, M.P., & Raizen, D.M. (2017). Stress-induced sleep after exposure to ultraviolet light is promoted by p53 in Caenorhabditis elegans. Genetics, 207, 571–582. doi: 10.1534/genetics.117.300070
  • Fry, A.L., Laboy, J.T., Huang, H., Hart, A.C., & Norman, K.R. (2016). A conserved GEF for rho-family GTPases acts in an EGF signaling pathway to promote sleep-like quiescence in Caenorhabditis elegans. Genetics, 202, 1153–1166. doi:10.1534/genetics.115.183038
  • Glauser, D.A., Chen, W.C., Agin, R., Macinnis, B.L., Hellman, A.B., Garrity, P.A., … Goodman, M.B. (2011). Heat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genetics, 188, 91–103. doi:10.1534/genetics.111.127100
  • Goetting, D.L., Soto, R., & Van Buskirk, C. (2018). Food-dependent plasticity in caenorhabditis elegans stress-induced sleep is mediated by TOR-FOXA and TGF-β signaling. Genetics, 209, 1183–1195. doi:10.1534/genetics.118.301204
  • Grubbs, J.J., Lopes, L.E., van der Linden, A.M., & Raizen, D.M. (2019). A salt-induced kinase (SIK) is required for the metabolic regulation of sleep. BioRxiv, 586701. doi:10.1101/586701
  • Guisbert, E., Czyz, D.M., Richter, K., McMullen, P.D., & Morimoto, R.I. (2013). Identification of a Tissue-Selective Heat Shock Response Regulatory Network. PLOS Genet., 9, e1003466. doi:10.1371/journal.pgen.1003466
  • Hardie, D.G., Ross, F.A., & Hawley, S.A. (2012). AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nature Reviews Molecular Cell Biology, 13, 251–262. doi:10.1038/nrm3311
  • Hill, A.J., Mansfield, R., Lopez, J.M.N.G., Raizen, D.M., & Van Buskirk, C. (2014). Cellular stress induces a protective sleep-like state in C. elegans. Current Biology, 24, 2399–2405. doi:10.1016/j.cub.2014.08.040
  • Hobert, O., Mori, I., Yamashita, Y., Honda, H., Ohshima, Y., Liu, Y., & Ruvkun, G. (1997). Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron, 19, 345–357. doi:10.1016/S0896-6273(00)80944-7
  • Iannacone, M.J., Beets, I., Lopes, L.E., Churgin, M.A., Fang-Yen, C., Nelson, M.D., … Raizen, D.M. (2017). The RFamide receptor DMSR-1 regulates stress-induced sleep in. eLife, 6, e19837. doi:10.7554/eLife.19837
  • Inada, H., Ito, H., Satterlee, J., Sengupta, P., Matsumoto, K., & Mori, I. (2006). Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics, 172, 2239–2252. doi:10.1534/genetics.105.050013
  • Janda, M., Gerstner, N., Obermair, A., Fuerst, A., Wachter, S., Dieckmann, K., & Pötter, R. (2000). Quality of life changes during conformal radiation therapy for prostate carcinoma. Cancer, 89, 1322–1328. doi:10.1002/1097-0142(20000915)89:6 < 1322::AID-CNCR18 > 3.0.CO;2-D
  • Keene, A.C., Duboué, E.R., McDonald, D.M., Dus, M., Suh, G.S.B., Waddell, S., & Blau, J. (2010). Clock and cycle limit starvation-induced sleep loss in Drosophila. Current Biology, 20, 1209–1215. doi:10.1016/j.cub.2010.05.029
  • Kijima, T., Prince, T.L., Tigue, M.L., Yim, K.H., Schwartz, H., Beebe, K., … Neckers, L. (2018). HSP90 inhibitors disrupt a transient HSP90–HSF1 interaction and identify a noncanonical model of HSP90-mediated HSF1 regulation. Scientific Reports, 8, 6976. doi: 10.1038/s41598-018-25404-w
  • Kim, J., Yang, G., Kim, Y., Kim, J., & Ha, J. (2016). AMPK activators: Mechanisms of action and physiological activities. Experimental & Molecular Medicine, 48, e224–e224. doi:10.1038/emm.2016.16
  • Kim, K.W., & Jin, Y. (2015). Neuronal responses to stress and injury in C. elegans. FEBS Letters, 589, 1644–1652. doi:10.1016/j.febslet.2015.05.005
  • Kimata, T., Sasakura, H., Ohnishi, N., Nishio, N., & Mori, I. (2012). Thermotaxis of C. elegans as a model for temperature perception, neural information processing and neural plasticity. Worm, 1, 31–41. doi:10.4161/worm.19504
  • Komatsu, H., Mori, I., Rhee, J.S., Akaike, N., & Ohshima, Y. (1996). Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron, 17, 707–718. doi:10.1016/S0896-6273(00)80202-0
  • Krueger, J.M., Frank, M.G., Wisor, J.P., & Roy, S. (2016). Sleep function: Toward elucidating an enigma. Sleep Medicine Reviews, 28, 46–54. doi:10.1016/j.smrv.2015.08.005
  • Lanjuin, A., VanHoven, M.K., Bargmann, C.I., Thompson, J.K., & Sengupta, P. (2003). Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. Developmental Cell, 5 (4), 621–633. doi:10.1016/S1534-5807(03)00293-4
  • Lans, H., & Vermeulen, W. (2011). Nucleotide excision repair in Caenorhabditis elegans. Molecular Biology International, 2011, 1–12. doi:10.4061/2011/542795
  • Lenz, O., Xiong, J., Nelson, M.D., Raizen, D.M., & Williams, J.A. (2015). FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain, Behavior, and Immunity, 47, 141–148. doi:10.1016/j.bbi.2014.12.028
  • Liu, S., Schulze, E., & Baumeister, R. (2012). Temperature- and touch-sensitive neurons couple CNG and TRPV channel activities to control heat avoidance in Caenorhabditis elegans. PLoS One, 7, e32360. doi:10.1371/journal.pone.0032360
  • MacFadyen, U.M., Oswald, I., & Lewis, S.A. (1973). Starvation and human slow wave sleep. Journal of Applied Physiology, 35, 391–394. doi:10.1152/jappl.1973.35.3.391
  • Monga, U., Kerrigan, A.J., Thornby, J., & Monga, T.N. (1999). Prospective study of fatigue in localized prostate cancer patients undergoing radiotherapy. Radiation Oncology Investigations, 7, 178–185. doi:10.1002/(SICI)1520-6823(1999)7:3 < 178::AID-ROI7 > 3.0.CO;2-0
  • Naidoo, N. (2009). Cellular stress/the unfolded protein response: Relevance to sleep and sleep disorders. Sleep Medicine Reviews, 13, 195–204. doi:10.1016/j.smrv.2009.01.001
  • Nath, R.D., Chow, E.S., Wang, H., Schwarz, E.M., & Sternberg, P.W. (2016). C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Current Biology, 26, 2446–2455. doi:10.1016/j.cub.2016.07.048
  • Nelson, M.D., Lee, K.H., Churgin, M.A., Hill, A.J., Van Buskirk, C., Fang-Yen, C., & Raizen, D.M. (2014). FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Current Biology, 24, 2406–2410. doi:10.1016/j.cub.2014.08.037
  • Perluigi, M., Di Domenico, F., Blarzino, C., Foppoli, C., Cini, C., Giorgi, A., … Coccia, R. (2010). Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: A proteomic approach. Proteome Science, 8, 13. doi:10.1186/1477-5956-8-13
  • Pujol, N., Cypowyj, S., Ziegler, K., Millet, A., Astrain, A., Goncharov, A., … Ewbank, J.J. (2008). Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Current Biology, 18, 481–489. doi:10.1016/j.cub.2008.02.079
  • Rodriguez, L., Snoek, L.B., De Bono, M., & Kammenga, J.E. (2013). Worms under stress: C. elegans stress response and its relevance to complex human disease and aging. Trends in Genetics, 29, 367–374. doi:10.1016/j.tig.2013.01.010
  • Saffer, A.M., Kim, D.H., van Oudenaarden, A., & Horvitz, H.R. (2011). The Caenorhabditis elegans synthetic multivulva genes prevent RAS pathway activation by tightly repressing global ectopic expression of lin-3 EGF. PLoS Genetics, 7, e1002418. doi:10.1371/journal.pgen.1002418
  • Satterlee, J.S., Sasakura, H., Kuhara, A., Berkeley, M., Mori, I., & Sengupta, P. (2001). Specification of thermosensory neuron fate in C. elegans requires ttx-1, a homolog of otd/Otx. Neuron, 31, 943–956. doi:10.1016/S0896-6273(01)00431-7
  • Sugi, T., Nishida, Y., & Mori, I. (2011). Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nature Neuroscience, 14, 984–992. doi:10.1038/nn.2854
  • Van Buskirk, C., & Sternberg, P.W. (2010). Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development, 137, 2065–2074. doi:10.1242/dev.040881
  • Van Oosten-Hawle, P., Porter, R.S., & Morimoto, R.I. (2013). Regulation of organismal proteostasis by transcellular chaperone signaling. Cell, 153, 1366–1378. doi:10.1016/j.cell.2013.05.015
  • Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C., & Aroian, R.V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 100, 2760–2765. doi:10.1073/pnas0538072100
  • Zada, D., Bronshtein, I., Lerer-Goldshtein, T., Garini, Y., & Appelbaum, L. (2019). Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nature Communications, 10, 895. doi: 10.1038/s41467-019-08806-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.