568
Views
4
CrossRef citations to date
0
Altmetric
Section 6: Survival, aging and disease

The discovery and consequences of the central role of the nervous system in the control of protein homeostasis

Pages 489-499 | Received 17 Feb 2020, Accepted 14 May 2020, Published online: 12 Jun 2020

References

  • Akerfelt, M., Morimoto, R.I., & Sistonen, L. (2010). Heat shock factors: Integrators of cell stress, development and lifespan. Nature Reviews. Molecular Cell Biology, 11(8), 545–555. doi:10.1038/nrm2938
  • Ananthan, J., Goldberg, A.L., & Voellmy, R. (1986). Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science (New York, N.Y.), 232(4749), 522–524. doi:10.1126/science.3083508
  • Anderson, A., Laurenson-Schafer, H., Partridge, F.A., Hodgkin, J., & McMullan, R. (2013). Serotonergic chemosensory neurons modify the C. elegans immune response by regulating G-protein signaling in epithelial cells. PLoS Pathogens, 9(12), e1003787. doi:10.1371/journal.ppat.1003787
  • Avery, L., Bargmann, C.I., & Horvitz, H.R. (1993). The Caenorhabditis elegans unc-31 gene affects multiple nervous system-controlled functions. Genetics, 134(2), 455–464. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8325482
  • Balch, W.E., Morimoto, R.I., Dillin, A., & Kelly, J.W. (2008). Adapting proteostasis for disease intervention. Science (New York, N.Y.), 319(5865), 916–919. doi:10.1126/science.1141448
  • Bargmann, C.I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science (New York, N.Y.), 282(5396), 2028–2033. doi:10.1126/science.282.5396.2028
  • Bednarska, N.G., Schymkowitz, J., Rousseau, F., & Van Eldere, J. (2013). Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology (Reading, England), 159(Pt 9), 1795–1806. doi:10.1099/mic.0.069575-0
  • Ben-Gedalya, T., & Cohen, E. (2012). Quality control compartments coming of age. Traffic (Copenhagen, Denmark), 13(5), 635–642. doi:10.1111/j.1600-0854.2012.01330.x
  • Berendzen, K.M., Durieux, J., Shao, L.-W., Tian, Y., Kim, H.-E., Wolff, S., … Dillin, A. (2016). Neuroendocrine coordination of mitochondrial stress signaling and proteostasis. Cell, 166(6), 1553–1563 e1510. doi:10.1016/j.cell.2016.08.042
  • Bernales, S., Papa, F.R., & Walter, P. (2006). Intracellular signaling by the unfolded protein response. Annual Review of Cell and Developmental Biology, 22, 487–508. doi:10.1146/annurev.cellbio.21.122303.120200
  • Bernard, C. (1965). An introduction to the study of experimental medicine. Medical Journal of Australia, 1(4), 119–120. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14248653
  • Beverly, M., Anbil, S., & Sengupta, P. (2011). Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(32), 11718–11727. doi:10.1523/JNEUROSCI.1098-11.2011
  • Bishop, N.A., & Guarente, L. (2007). Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature, 447(7144), 545–549. doi:10.1038/nature05904
  • Blake, M.J., Buckley, D.J., & Buckley, A.R. (1993). Dopaminergic regulation of heat shock protein-70 expression in adrenal gland and aorta. Endocrinology, 132(3), 1063–1070. doi:10.1210/endo.132.3.8095012
  • Blake, M.J., Udelsman, R., Feulner, G.J., Norton, D.D., & Holbrook, N.J. (1991). Stress-induced heat shock protein 70 expression in adrenal cortex: An adrenocorticotropic hormone-sensitive, age-dependent response. Proceedings of the National Academy of Sciences of the United States of America, 88(21), 9873–9877. doi:10.1073/pnas.88.21.9873
  • Boccitto, M., Lamitina, T., & Kalb, R.G. (2012). Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. PLoS One, 7(3), e33494. doi:10.1371/journal.pone.0033494
  • Brandman, O., Stewart-Ornstein, J., Wong, D., Larson, A., Williams, C.C., Li, G.-W., … Weissman, J.S. (2012). A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell, 151(5), 1042–1054. doi:10.1016/j.cell.2012.10.044
  • Broughton, S., & Partridge, L. (2009). Insulin/IGF-like signalling, the central nervous system and aging. The Biochemical Journal, 418(1), 1–12. doi:10.1042/BJ20082102
  • Burkewitz, K., Morantte, I., Weir, H.J.M., Yeo, R., Zhang, Y., Huynh, F.K., … Mair, W.B. (2015). Neuronal CRTC-1 governs systemic mitochondrial metabolism and lifespan via a catecholamine signal. Cell, 160(5), 842–855. doi:10.1016/j.cell.2015.02.004
  • Byrne, J., Wilhelm, T., & Richly, H. (2017). Inhibition of neuronal autophagy mediates longevity. Aging, 9(9), 1953–1954. doi:10.18632/aging.101297
  • Cao, X., & Aballay, A. (2016). Neural inhibition of dopaminergic signaling enhances immunity in a cell-non-autonomous manner. Current Biology, 26(17), 2329–2334. doi:10.1016/j.cub.2016.06.036
  • Carrano, A.C., Liu, Z., Dillin, A., & Hunter, T. (2009). A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature, 460(7253), 396–399. doi:10.1038/nature08130
  • Chalfie, M., Sulston, J.E., White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 5(4), 956–964. doi:10.1523/JNEUROSCI.05-04-00956.1985
  • Chase, D.L., & Koelle, M.R. (2007). Biogenic amine neurotransmitters in C. elegans. WormBook, pp. 1–15. doi:10.1895/wormbook.1.132.1
  • Chikka, M.R., Anbalagan, C., Dvorak, K., Dombeck, K., & Prahlad, V. (2016). The mitochondria-regulated immune pathway activated in the C. elegans intestine is neuroprotective. Cell Reports, 16(9), 2399–2414. doi:10.1016/j.celrep.2016.07.077
  • Clark, D.A., Biron, D., Sengupta, P., & Samuel, A.D. (2006). The AFD sensory neurons encode multiple functions underlying thermotactic behavior in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(28), 7444–7451. doi:10.1523/JNEUROSCI.1137-06.2006
  • Colosimo, M.E., Brown, A., Mukhopadhyay, S., Gabel, C., Lanjuin, A.E., Samuel, A.D., & Sengupta, P. (2004). Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Current Biology : CB, 14(24), 2245–2251. doi:10.1016/j.cub.2004.12.030
  • Cruz-Corchado, J., Ooi, F.K., Das, S., & Prahlad, V. (2020). Global transcriptome changes that accompany alterations in serotonin levels in Caenorhabditis elegans. G3 (Bethesda), 10, 1225–1246. doi:10.1534/g3.120.401088
  • Curran, K.P., & Chalasani, S.H. (2012). Serotonin circuits and anxiety: What can invertebrates teach us? Invertebrate Neuroscience : IN, 12(2), 81–92. doi:10.1007/s10158-012-0140-y
  • Dai, C., Whitesell, L., Rogers, A.B., & Lindquist, S. (2007). Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell, 130(6), 1005–1018. doi:10.1016/j.cell.2007.07.020
  • Dalton, H.M., & Curran, S.P. (2018). Hypodermal responses to protein synthesis inhibition induce systemic developmental arrest and AMPK-dependent survival in Caenorhabditis elegans. PLoS Genetics, 14(7), e1007520. doi:10.1371/journal.pgen.1007520
  • Das, S., Ooi, F.K., Cruz Corchado, J., Fuller, L.C., Weiner, J.A., & Prahlad, V. (2020). Serotonin signaling by maternal neurons upon stress ensures progeny survival. eLife 2020;9:e55246. doi:10.7554/eLife.55246
  • David, R. (2013). Protein metabolism: Proteostasis goes global. Nature Reviews Molecular Cell Biology, 14(8), 461. doi:10.1038/nrm3626
  • De Maio, A., Santoro, M.G., Tanguay, R.M., & Hightower, L.E. (2012). Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: A new view of biology, a new society, and a new journal. Cell Stress Chaperones, 17(2), 139–143. doi:10.1007/s12192-012-0320-z
  • Durieux, J., Wolff, S., & Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell, 144(1), 79–91. doi:10.1016/j.cell.2010.12.016
  • El-Ami, T., Moll, L., Carvalhal Marques, F., Volovik, Y., Reuveni, H., & Cohen, E. (2014). A novel inhibitor of the insulin/IGF signaling pathway protects from age-onset, neurodegeneration-linked proteotoxicity. Aging Cell, 13(1), 165–174. doi:10.1111/acel.12171
  • Fawcett, T.W., Sylvester, S.L., Sarge, K.D., Morimoto, R.I., & Holbrook, N.J. (1994). Effects of neurohormonal stress and aging on the activation of mammalian heat shock factor 1. The Journal of Biological Chemistry, 269(51), 32272–32278. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7798227
  • Fields, P.A., Dong, Y., Meng, X., & Somero, G.N. (2015). Adaptations of protein structure and function to temperature: There is more than one way to ‘skin a cat’. The Journal of Experimental Biology, 218(Pt 12), 1801–1811. doi:10.1242/jeb.114298
  • Finger, F., Ottens, F., Springhorn, A., Drexel, T., Proksch, L., Metz, S., … Hoppe, T. (2019). Olfaction regulates organismal proteostasis and longevity via microRNA-dependent signaling. Nature Metabolism, 1(3), 350–359. doi:10.1038/s42255-019-0033-z
  • Frakes, A.E., Metcalf, M.G., Tronnes, S.U., Bar-Ziv, R., Durieux, J., Gildea, H.K., … Dillin, A. (2020). Four glial cells regulate ER stress resistance and longevity via neuropeptide signaling in C. elegans. Science (New York, N.Y.), 367(6476), 436–440. doi:10.1126/science.aaz6896
  • Gaglia, G., Rashid, R., Yapp, C., Joshi, G.N., Li, C.G., Lindquist, S.L., … Santagata, S. (2020). HSF1 phase transition mediates stress adaptation and cell fate decisions. Nature Cell Biology, 22(2), 151–158. doi:10.1038/s41556-019-0458-3
  • Gally, C., & Bessereau, J.L. (2003). [C. elegans: of neurons and genes]. Medecine Sciences : M/S, 19(6–7), 725–734. doi:10.1051/medsci/20031967725
  • Geiler-Samerotte, K.A., Dion, M.F., Budnik, B.A., Wang, S.M., Hartl, D.L., & Drummond, D.A. (2011). Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proceedings of the National Academy of Sciences of the United States of America, 108(2), 680–685. doi:10.1073/pnas.1017570108
  • Gething, M.J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355(6355), 33–45. doi:10.1038/355033a0
  • Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R., & Morimoto, R.I. (2006). Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science (New York, N.Y.), 311(5766), 1471–1474. doi:10.1126/science.1124514
  • Goff, S.A., & Goldberg, A.L. (1985). Production of abnormal proteins in E. coli stimulates transcription of lon and other heat shock genes. Cell, 41(2), 587–595. doi:10.1016/S0092-8674(85)80031-3
  • Goff, S.A., & Goldberg, A.L. (1987). An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. The Journal of Biological Chemistry, 262(10), 4508–4515. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3549709
  • Goldberg, A.L. (1971). A role of aminoacyl-tRNA in the regulation of protein breakdown in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 68(2), 362–366. doi:10.1073/pnas.68.2.362
  • Goldberg, A.L. (1972). Correlation between rates of degradation of bacterial proteins in vivo and their sensitivity to proteases. Proceedings of the National Academy of Sciences of the United States of America, 69(9), 2640–2644. doi:10.1073/pnas.69.9.2640
  • Goldstein, D.S., & Kopin, I.J. (2017). Homeostatic systems, biocybernetics, and autonomic neuroscience. Autonomic Neuroscience : Basic & Clinical, 208, 15–28. doi:10.1016/j.autneu.2017.09.001
  • Gomez-Pastor, R., Burchfiel, E.T., & Thiele, D.J. (2018). Regulation of heat shock transcription factors and their roles in physiology and disease. Nature Reviews. Molecular Cell Biology, 19(1), 4–19. doi:10.1038/nrm.2017.73
  • Goodman, M.B., & Sengupta, P. (2018). The extraordinary AFD thermosensor of C. elegans. Pflugers Archiv : European Journal of Physiology, 470(5), 839–849. doi:10.1007/s00424-017-2089-5
  • Goodman, M.B., & Sengupta, P. (2019). How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics, 212(1), 25–51. doi:10.1534/genetics.118.300241
  • Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., … Ron, D. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell, 11(3), 619–633. doi:10.1016/S1097-2765(03)00105-9
  • Haynes, C.M., & Ron, D. (2010). The mitochondrial UPR - protecting organelle protein homeostasis. Journal of Cell Science, 123(Pt 22), 3849–3855. doi:10.1242/jcs.075119
  • Hightower, L.E. (1980). Cultured animal cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. Journal of Cellular Physiology, 102(3), 407–427. doi:10.1002/jcp.1041020315
  • Hipp, M.S., Park, S.H., & Hartl, F.U. (2014). Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends in Cell Biology, 24(9), 506–514. doi:10.1016/j.tcb.2014.05.003
  • Hobert, O. (2005). Specification of the nervous system. In WormBook (pp. 1–19). WormBook, ed. The C. elegans Research Community, doi:10.1895/wormbook.
  • Hofmann, G., & Somero, G. (1995). Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. The Journal of Experimental Biology, 198(Pt 7), 1509–1518. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9319406
  • Iberall, A.S., & Cardon, S.Z. (1964). Control in Biological systems-a physical review. Annals of the New York Academy of Sciences, 117, 445–518. doi:10.1111/j.1749-6632.1964.tb48202.x
  • Imanikia, S., Ozbey, N.P., Krueger, C., Casanueva, M.O., & Taylor, R.C. (2019). Neuronal XBP-1 activates intestinal lysosomes to improve proteostasis in C. elegans. Current Biology : CB, 29(14), 2322–2338 e2327. doi:10.1016/j.cub.2019.06.031
  • Jayaraj, G.G., Hipp, M.S., & Hartl, F.U. (2020). Functional modules of the proteostasis network. Cold Spring Harbor Perspectives in Biology, 12(1), a033951. doi:10.1101/cshperspect
  • Jiang, H.C., Hsu, J.M., Yen, C.P., Chao, C.C., Chen, R.H., & Pan, C.L. (2015). Neural activity and CaMKII protect mitochondria from fragmentation in aging Caenorhabditis elegans neurons. Proceedings of the National Academy of Sciences of the United States of America, 112(28), 8768–8773. doi:10.1073/pnas.1501831112
  • Joshi, K.K., Matlack, T.L., & Rongo, C. (2016). Dopamine signaling promotes the xenobiotic stress response and protein homeostasis. The EMBO Journal, 35(17), 1885–1901. doi:10.15252/embj.201592524
  • Kandror, O., Busconi, L., Sherman, M., & Goldberg, A.L. (1994). Rapid degradation of an abnormal protein in Escherichia coli involves the chaperones GroEL and GroES. The Journal of Biological Chemistry, 269(38), 23575–23582. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7916344
  • Kawli, T., Wu, C., & Tan, M.W. (2010). Systemic and cell intrinsic roles of Gqalpha signaling in the regulation of innate immunity, oxidative stress, and longevity in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13788–13793. doi:10.1073/pnas.0914715107
  • Knowles, S.E., & Ballard, F.J. (1976). Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. The Biochemical Journal, 156(3), 609–617. doi:10.1042/bj1560609
  • Knowles, S.E., & Ballard, F.J. (1978). Effects of amino acid analogues on protein synthesis and degradation in isolated cells. The British Journal of Nutrition, 40(2), 275–287. doi:10.1079/bjn19780123
  • Knowles, S.E., Gunn, J.M., Hanson, R.W., & Ballard, F.J. (1975). Increased degradation rates of protein synthesized in hepatoma cells in the presence of amino acid analogues. The Biochemical Journal, 146(3), 595–600. doi:10.1042/bj1460595
  • Kostova, K.K., Hickey, K.L., Osuna, B.A., Hussmann, J.A., Frost, A., Weinberg, D.E., & Weissman, J.S. (2017). CAT-tailing as a fail-safe mechanism for efficient degradation of stalled nascent polypeptides. Science (New York, N.Y.), 357(6349), 414–417. doi:10.1126/science.aam7787
  • Kozutsumi, Y., Segal, M., Normington, K., Gething, M.J., & Sambrook, J. (1988). The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature, 332(6163), 462–464. doi:10.1038/332462a0
  • Kumsta, C., Ching, T.-T., Nishimura, M., Davis, A.E., Gelino, S., Catan, H.H., … Hansen, M. (2014). Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1. Aging Cell, 13(3), 419–430. doi:10.1111/acel.12189
  • Labbadia, J., & Morimoto, R.I. (2015). The biology of proteostasis in aging and disease. Annual Review of Biochemistry, 84, 435–464. doi:10.1146/annurev-biochem-060614-033955
  • Lechan, R.M., & Fekete, C. (2006). The TRH neuron: A hypothalamic integrator of energy metabolism. Progress in Brain Research, 153, 209–235. doi:10.1016/S0079-6123(06)53012-2
  • Lehrbach, N.J., & Ruvkun, G. (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife, 5, 7554. doi:10.7554/eLife.17721
  • Leow, M.K. (2007). A mathematical model of pituitary-thyroid interaction to provide an insight into the nature of the thyrotropin-thyroid hormone relationship. Journal of Theoretical Biology, 248(2), 275–287. doi:10.1016/j.jtbi.2007.05.016
  • Li, X., Matilainen, O., Jin, C., Glover-Cutter, K.M., Holmberg, C.I., & Blackwell, T.K. (2011). Specific SKN-1/Nrf stress responses to perturbations in translation elongation and proteasome activity. PLoS Genetics, 7(6), e1002119pdoi:10.1371/journal.pgen.1002119
  • Lindquist, S. (1986). The heat-shock response. Annual Review of Biochemistry, 55, 1151–1191. doi:10.1146/annurev.bi.55.070186.005443
  • Ma, T., Trinh, M.A., Wexler, A.J., Bourbon, C., Gatti, E., Pierre, P., … Klann, E. (2013). Suppression of eIF2α kinases alleviates Alzheimer’s disease-related plasticity and memory deficits . Nature Neuroscience, 16(9), 1299–1305. doi:10.1038/nn.3486
  • Madhivanan, K., Greiner, E.R., Alves-Ferreira, M., Soriano-Castell, D., Rouzbeh, N., Aguirre, C.A., … Encalada, S.E. (2018). Cellular clearance of circulating transthyretin decreases cell-nonautonomous proteotoxicity in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 115(33), E7710–E7719. doi:10.1073/pnas.1801117115
  • Maman, M., Carvalhal Marques, F., Volovik, Y., Dubnikov, T., Bejerano-Sagie, M., & Cohen, E. (2013). A neuronal GPCR is critical for the induction of the heat shock response in the nematode C. elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(14), 6102–6111. doi:10.1523/JNEUROSCI.4023-12.2013
  • Mattes, R.D. (1997). Physiologic responses to sensory stimulation by food: Nutritional implications. Journal of the American Dietetic Association, 97(4), 406–413. doi:10.1016/S0002-8223(97)00101-6
  • Mattoo, R.U., & Goloubinoff, P. (2014). Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cellular and Molecular Life Sciences : Cmls, 71(17), 3311–3325. doi:10.1007/s00018-014-1627-y
  • Mendillo, M.L., Santagata, S., Koeva, M., Bell, G.W., Hu, R., Tamimi, R.M., … Lindquist, S. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 150(3), 549–562. doi:10.1016/j.cell.2012.06.031
  • Miles, J., Scherz-Shouval, R., & van Oosten-Hawle, P. (2019). Expanding the organismal proteostasis network: Linking systemic stress signaling with the innate immune response. Trends in Biochemical Sciences, 44(11), 927–942. doi:10.1016/j.tibs.2019.06.009
  • Miller, S.B.M., Ho, C.-T., Winkler, J., Khokhrina, M., Neuner, A., Mohamed, M.Y.H., … Bukau, B. (2015). Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. The EMBO Journal, 34(6), 778–797. doi:10.15252/embj.201489524
  • Minnerly, J., Zhang, J., Parker, T., Kaul, T., & Jia, K. (2017). The cell non-autonomous function of ATG-18 is essential for neuroendocrine regulation of Caenorhabditis elegans lifespan. PLoS Genetics, 13(5), e1006764. doi:10.1371/journal.pgen.1006764
  • Mogk, A., Bukau, B., & Kampinga, H.H. (2018). Cellular handling of protein aggregates by disaggregation machines. Molecular Cell, 69(2), 214–226. doi:10.1016/j.molcel.2018.01.004
  • Moll, L., Ben-Gedalya, T., Reuveni, H., & Cohen, E. (2016). The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 30(4), 1656–1669. doi:10.1096/fj.15-281675
  • Morano, K.A., Liu, P.C., & Thiele, D.J. (1998). Protein chaperones and the heat shock response in Saccharomyces cerevisiae. Current Opinion in Microbiology, 1(2), 197–203. doi:10.1016/S1369-5274(98)80011-8
  • Moreno, J.A., Radford, H., Peretti, D., Steinert, J.R., Verity, N., Martin, M.G., … Mallucci, G.R. (2012). Sustained translational repression by eIF2α-P mediates prion neurodegeneration . Nature, 485(7399), 507–511. doi:10.1038/nature11058
  • Mori, K. (2009). Signalling pathways in the unfolded protein response: Development from yeast to mammals. Journal of Biochemistry, 146(6), 743–750. doi:10.1093/jb/mvp166
  • Mori, K., Kawahara, T., Yoshida, H., Yanagi, H., & Yura, T. (1996). Signalling from endoplasmic reticulum to nucleus: Transcription factor with a basic-leucine zipper motif is required for the unfolded protein-response pathway. Genes to Cells : Devoted to Molecular & Cellular Mechanisms, 1(9), 803–817. doi:10.1046/j.1365-2443.1996.d01-274.x
  • Morimoto, R.I. (1998). Regulation of the heat shock transcriptional response: Cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes & Development, 12(24), 3788–3796. doi:10.1101/gad.12.24.3788
  • Munro, S., & Pelham, H.R. (1986). An Hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell, 46(2), 291–300. doi:10.1016/0092-8674(86)90746-4
  • Munro, S., & Pelham, H.R. (1987). A C-terminal signal prevents secretion of luminal ER proteins. Cell, 48(5), 899–907. doi:10.1016/0092-8674(87)90086-9
  • Neef, D.W., Turski, M.L., & Thiele, D.J. (2010). Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biology, 8(1), e1000291. doi:10.1371/journal.pbio.1000291
  • O’Brien, D., Jones, L.M., Good, S., Miles, J., Vijayabaskar, M.S., Aston, R., … van Oosten-Hawle, P. (2018). A PQM-1-mediated response triggers transcellular chaperone signaling and regulates organismal proteostasis. Cell Reports, 23(13), 3905–3919. doi:10.1016/j.celrep.2018.05.093
  • Ooi, F.K., & Prahlad, V. (2017). Olfactory experience primes the heat shock transcription factor HSF-1 to enhance the expression of molecular chaperones in C. elegans. Science Signaling, 10(501). eaan4893. doi:10.1126/scisignal.aan4893
  • Pelham, H.R., & Munro, S. (1993). Sorting of membrane proteins in the secretory pathway. Cell, 75(4), 603–605. doi:10.1016/0092-8674(93)90479-A
  • Powers, E.T., Morimoto, R.I., Dillin, A., Kelly, J.W., & Balch, W.E. (2009). Biological and chemical approaches to diseases of proteostasis deficiency. Annual Review of Biochemistry, 78, 959–991. doi:10.1146/annurev.biochem.052308.114844
  • Prahlad, V., Cornelius, T., & Morimoto, R.I. (2008). Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science (New York, N.Y.), 320(5877), 811–814. doi:10.1126/science.1156093
  • Prahlad, V., & Morimoto, R.I. (2011). Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14204–14209. doi:10.1073/pnas.1106557108
  • Prouty, W.F., Karnovsky, M.J., & Goldberg, A.L. (1975). Degradation of abnormal proteins in Escherichia coli. Formation of protein inclusions in cells exposed to amino acid analogs. The Journal of Biological Chemistry, 250(3), 1112–1122. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1089651
  • Ray, A., Zhang, S., Rentas, C., Caldwell, K.A., & Caldwell, G.A. (2014). RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing in the unfolded protein response pathway. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(48), 16076–16085. doi:10.1523/JNEUROSCI.1945-14.2014
  • Ritossa, F. (1996). Discovery of the heat shock response. Cell Stress & Chaperones, 1(2), 97–98. doi:10.1379/1466-1268(1996)001<0097:DOTHSR>2.3.CO;2
  • Roitenberg, N., Bejerano‐Sagie, M., Boocholez, H., Moll, L., Marques, F.C., Golodetzki, L., … Cohen, E. (2018). Modulation of caveolae by insulin/IGF-1 signaling regulates aging of Caenorhabditis elegans. EMBO Reports, 19(8). e45673. doi:10.15252/embr.201745673
  • Scherz-Shouval, R., Santagata, S., Mendillo, M.L., Sholl, L.M., Ben-Aharon, I., Beck, A.H., … Lindquist, S. (2014). The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell, 158(3), 564–578. doi:10.1016/j.cell.2014.05.045
  • Schmeisser, S., Priebe, S., Groth, M., Monajembashi, S., Hemmerich, P., Guthke, R., … Ristow, M. (2013). Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension. Molecular Metabolism, 2(2), 92–102. doi:10.1016/j.molmet.2013.02.002
  • Silverman, R.M., Cummings, E.E., O'Reilly, L.P., Miedel, M.T., Silverman, G.A., Luke, C.J., … Pak, S.C. (2015). The aggregation-prone intracellular serpin SRP-2 fails to transit the ER in Caenorhabditis elegans. Genetics, 200(1), 207–219. doi:10.1534/genetics.115.176180
  • Singh, V., & Aballay, A. (2012). Endoplasmic reticulum stress pathway required for immune homeostasis is neurally controlled by arrestin-1. The Journal of Biological Chemistry, 287(40), 33191–33197. doi:10.1074/jbc.M112.398362
  • Sinha, A., & Rae, R. (2014). A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans. PLoS One, 9(8), e101970. doi:10.1371/journal.pone.0101970
  • Sitron, C.S., & Brandman, O. (2019). CAT tails drive degradation of stalled polypeptides on and off the ribosome. Nature Structural & Molecular Biology, 26(6), 450–459. doi:10.1038/s41594-019-0230-1
  • Sitron, C.S., Park, J.H., & Brandman, O. (2017). Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA (New York, N.Y.), 23(5), 798–810. doi:10.1261/rna.060897.117
  • Sitron, C.S., Park, J.H., Giafaglione, J.M., & Brandman, O. (2020). Aggregation of CAT tails blocks their degradation and causes proteotoxicity in S. cerevisiae. PLoS One, 15(1), e0227841. doi:10.1371/journal.pone.0227841
  • Somero, G.N. (1995). Proteins and temperature. Annual Review of Physiology, 57, 43–68. doi:10.1146/annurev.ph.57.030195.000355
  • Stein, G.M., & Murphy, C.T. (2012). The intersection of aging, longevity pathways, and learning and memory in C. elegans. Frontiers in Genetics, 3, 259. doi:10.3389/fgene.2012.00259
  • Steinbaugh, M.J., Narasimhan, S.D., Robida-Stubbs, S., Moronetti Mazzeo, L.E., Dreyfuss, J.M., Hourihan, J.M., … Blackwell, T.K. (2015). Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence. eLife 2015;4:e07836. doi:10.7554/eLife.07836
  • Styer, K.L., Singh, V., Macosko, E., Steele, S.E., Bargmann, C.I., & Aballay, A. (2008). Innate immunity in Caenorhabditis elegans is regulated by neurons expressing NPR-1/GPCR. Science (New York, N.Y.), 322(5900), 460–464. doi:10.1126/science.1163673
  • Sun, J., Liu, Y., & Aballay, A. (2012). Organismal regulation of XBP-1-mediated unfolded protein response during development and immune activation. EMBO Reports, 13(9), 855–860. doi:10.1038/embor.2012.100
  • Sun, J., Singh, V., Kajino-Sakamoto, R., & Aballay, A., (2011). Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science (New York, N.Y.), 332(6030), 729–732. doi:10.1126/science.1203411
  • Tatum, M.C., Ooi, F.K., Chikka, M.R., Chauve, L., Martinez-Velazquez, L.A., Steinbusch, H.W.M., … Prahlad, V. (2015). Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Current Biology : CB, 25(2), 163–174. doi:10.1016/j.cub.2014.11.040
  • Taylor, R.C., Berendzen, K.M., & Dillin, A. (2014). Systemic stress signalling: Understanding the cell non-autonomous control of proteostasis. Nature Reviews. Molecular Cell Biology, 15(3), 211–217. doi:10.1038/nrm3752
  • Taylor, R.C., & Dillin, A. (2013). XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell, 153(7), 1435–1447. doi:10.1016/j.cell.2013.05.042
  • Tracey, K.J. (2002). The inflammatory reflex. Nature, 420(6917), 853–859. doi:10.1038/nature01321
  • Tyedmers, J., Mogk, A., & Bukau, B. (2010). Cellular strategies for controlling protein aggregation. Nature Reviews. Molecular Cell Biology, 11(11), 777–788. doi:10.1038/nrm2993
  • van Oosten-Hawle, P., Porter, R.S., & Morimoto, R.I. (2013). Regulation of organismal proteostasis by transcellular chaperone signaling. Cell, 153(6), 1366–1378. doi:10.1016/j.cell.2013.05.015
  • Vendruscolo, M., Knowles, T.P., & Dobson, C.M. (2011). Protein solubility and protein homeostasis: a generic view of protein misfolding disorders. Cold Spring Harbor Perspectives in Biology, 3(12), a010454. doi:10.1101/cshperspect.a010454
  • Vihervaara, A., Duarte, F.M., & Lis, J.T. (2018). Molecular mechanisms driving transcriptional stress responses. Nature Reviews. Genetics, 19(6), 385–397. doi:10.1038/s41576-018-0001-6
  • Vilchez, D., Morantte, I., Liu, Z., Douglas, P.M., Merkwirth, C., Rodrigues, A.P.C., … Dillin, A. (2012). RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature, 489(7415), 263–268. doi:10.1038/nature11315
  • Voellmy, R. (1994). Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Critical Reviews in Eukaryotic Gene Expression, 4(4), 357–401. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7734836
  • Voellmy, R. (1996). Sensing stress and responding to stress. EXS, 77, 121–137. doi:10.1007/978-3-0348-9088-5_9
  • Walrond, J.P., Kass, I.S., Stretton, A.O., & Donmoyer, J.E. (1985). Identification of excitatory and inhibitory motoneurons in the nematode Ascaris by electrophysiological techniques. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 5(1), 1–8. doi:10.1523/JNEUROSCI.05-01-00001.1985
  • Walter, P. (2010). Walking along the serendipitous path of discovery. Molecular Biology of the Cell, 21(1), 15–17. doi:10.1091/mbc.E09-08-0662
  • Walther, D.M., Kasturi, P., Zheng, M., Pinkert, S., Vecchi, G., Ciryam, P., … Hartl, F.U. (2015). Widespread Proteome Remodeling and Aggregation in Aging C. elegans. Cell, 161(4), 919–932. doi:10.1016/j.cell.2015.03.032
  • Weir, H.J., Yao, P., Huynh, F.K., Escoubas, C.C., Goncalves, R.L., Burkewitz, K., … Mair, W.B. (2017). Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metabolism, 26(6), 884–896 e885. doi:10.1016/j.cmet.2017.09.024
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1983). Factors that determine connectivity in the nervous system of Caenorhabditis elegans. Cold Spring Harbor Symposia on Quantitative Biology, 48 Pt 2, 633–640. doi:10.1101/sqb.1983.048.01.067
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056
  • Wolff, S., Weissman, J.S., & Dillin, A. (2014). Differential scales of protein quality control. Cell, 157(1), 52–64. doi:10.1016/j.cell.2014.03.007
  • Wolkow, C.A., Kimura, K.D., Lee, M.S., & Ruvkun, G. (2000). Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science (New York, N.Y.), 290(5489), 147–150. doi:10.1126/science.290.5489.147
  • Yin, J.A., Liu, X.J., Yuan, J., Jiang, J., & Cai, S.Q. (2014). Longevity manipulations differentially affect serotonin/dopamine level and behavioral deterioration in aging Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(11), 3947–3958. doi:10.1523/JNEUROSCI.4013-13.2014
  • Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891. doi:10.1016/S0092-8674(01)00611-0
  • Yu, Y., Zhi, L., Wu, Q., Jing, L., & Wang, D. (2018). NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cellular & Molecular Immunology, 15(1), 27–37. doi:10.1038/cmi.2016.8
  • Zhang, Y., Lanjuin, A., Chowdhury, S.R., Mistry, M., Silva-García, C.G., Weir, H.J., … Mair, W.B. (2019). Neuronal TORC1 modulates longevity via AMPK and cell nonautonomous regulation of mitochondrial dynamics in C. elegans. eLife 2019;8:e49158 doi:10.7554/eLife.49158
  • Zhang, Q., Wu, X., Chen, P., Liu, L., Xin, N., Tian, Y., & Dillin, A. (2018). The Mitochondrial unfolded protein response is mediated cell-non-autonomously by retromer-dependent Wnt signaling. Cell, 174(4), 870–883 e817. doi:10.1016/j.cell.2018.06.029

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.