871
Views
3
CrossRef citations to date
0
Altmetric
Section 5: Quiescence and sleep

The OptoGenBox – a device for long-term optogenetics in C. elegans

, , &
Pages 466-474 | Received 10 Jan 2020, Accepted 27 May 2020, Published online: 16 Jun 2020

References

  • Altun, Z.F., & Hall, D.H. (2011). Nervous system, general description. https://doi.org/doi:10.3908/wormatlas.1.18
  • Bergs, A., Schultheis, C., Fischer, E., Tsunoda, S.P., Erbguth, K., Husson, S.J., … Liewald, J.F. (2018). Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS One, 13(2), e0191802. doi:10.1371/journal.pone.0191802
  • Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P., & Deisseroth, K. (2009). Bi-stable neural state switches. Nature Neuroscience, 12(2), 229–234. doi:10.1038/nn.2247
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94. doi:10.1002/cbic.200300625
  • Bringmann, H. (2011). Agarose hydrogel microcompartments for imaging sleep- and wake-like behavior and nervous system development in Caenorhabditis elegans larvae. Journal of Neuroscience Methods, 201(1), 78–88. doi:10.1016/j.jneumeth.2011.07.013
  • Bringmann, H. (2018). Sleep-active neurons: Conserved motors of sleep. Genetics, 208(4), 1279–1289. doi:10.1534/genetics.117.300521
  • Bringmann, H. (2019). Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Reports, 20 (3). e46807. doi:10.15252/embr.201846807
  • De Rosa, M.J., Veuthey, T., Florman, J., Grant, J., Blanco, M.G., Andersen, N., … Alkema, M.J. (2019). The flight response impairs cytoprotective mechanisms by activating the insulin pathway. Nature, 573(7772), 135–138. doi:10.1038/s41586-019-1524-5
  • Driver, R.J., Lamb, A.L., Wyner, A.J., & Raizen, D.M. (2013). DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans. Current Biology, 23(6), 501–506. doi:10.1016/j.cub.2013.02.009
  • Edwards, S.L., Charlie, N.K., Milfort, M.C., Brown, B.S., Gravlin, C.N., Knecht, J.E., & Miller, K.G. (2008). A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biology, 6(8), e198. doi:10.1371/journal.pbio.0060198
  • Faville, R., Kottler, B., Goodhill, G.J., Shaw, P.J., & Van Swinderen, B. (2015). How deeply does your mutant sleep? Probing arousal to better understand sleep defects in Drosophila. Scientific Reports, 5, 8454. doi:10.1038/srep08454
  • Fenno, L., Yizhar, O., & Deisseroth, K. (2011). The development and application of optogenetics. Annual Review of Neuroscience, 34(1), 389–412. doi:10.1146/annurev-neuro-061010-113817
  • Gengyo-Ando, K., Kagawa-Nagamura, Y., Ohkura, M., Fei, X., Chen, M., Hashimoto, K., & Nakai, J. (2017). A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. Journal of Neuroscience Methods, 286, 56–68. doi:10.1016/j.jneumeth.2017.05.017
  • Han, X., Chow, B. Y., Zhou, H., Klapoetke, N. C., Chuong, A., Rajimehr, R., Yang, A., Baratta, M. V., Winkle, J., Desimone, R., & Boyden, E. S. (2011). A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Frontiers in systems neuroscience, 5, 18. https://doi.org/10.3389/fnsys.2011.00018
  • Hill, A.J., Mansfield, R., Lopez, J.M.N.G., Raizen, D.M., & Van Buskirk, C. (2014). Cellular stress induces a protective sleep-like state in C. elegans. Current Biology, 24(20), 2399–2405. doi:10.1016/j.cub.2014.08.040
  • Husson, S.J., Gottschalk, A., & Leifer, A.M. (2013). Optogenetic manipulation of neural activity in C. elegans: From synapse to circuits and behaviour. Biology of the Cell, 105(6), 235–250. doi:10.1111/boc.201200069
  • Kaplan, J.M., & Horvitz, H.R. (1993). A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 90(6), 2227–2231. doi:10.1073/pnas.90.6.2227
  • Lai, C.H., Chou, C.Y., Ch'ang, L.Y., Liu, C.S., & Lin, W. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Research, 10(5), 703–713. doi:10.1101/gr.10.5.703
  • Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D., & Tsien, R.Y. (2013). ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 16(10), 1499–1508. doi:10.1038/nn.3502
  • Maluck, E., Busack, I., Besseling, J., Masurat, F., Turek, M., Busch, K.E., & Bringmann, H. (2020). A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep. PLoS Biology, 18(2), e3000361. Retrieved from: . doi:10.1371/journal.pbio.3000361
  • Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A.M., Bamberg, E., & Hegemann, P. (2002). Channelrhodopsin-1: a light-gated proton channel in green algae. Science (New York, N.Y.), 296(5577), 2395–2398. doi:10.1126/science.1072068
  • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., … Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 13940–13945. doi:10.1073/pnas.1936192100
  • Okazaki, A., Sudo, Y., & Takagi, S. (2012). Optical silencing of c. elegans cells with arch proton pump. PLoS One, 7(5), e35370. doi:10.1371/journal.pone.0035370
  • Schmitt, C., Schultheis, C., Husson, S.J., Liewald, J.F., & Gottschalk, A. (2012). Specific expression of channelrhodopsin-2 in single neurons of Caenorhabditis elegans. PLoS One, 7(8), e43164. doi:10.1371/journal.pone.0043164
  • Schultheis, C., Liewald, J.F., Bamberg, E., Nagel, G., & Gottschalk, A. (2011). Optogenetic long-term manipulation of behavior and animal development. PLoS One, 6(4), e18766. doi:10.1371/journal.pone.0018766
  • Schwarz, J., & Bringmann, H. (2013). Reduced sleep-like quiescence in both hyperactive and hypoactive mutants of the galphaq gene egl-30 during lethargus in Caenorhabditis elegans. PLoS One, 8(9), e75853. doi:10.1371/journal.pone.0075853
  • Singh, K., Ju, J.Y., Walsh, M.B., DiIorio, M.A., & Hart, A.C. (2014). Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep, 37(9), 1439–1451. doi:10.5665/sleep.3990
  • Spies, J., & Bringmann, H. (2018). Automated detection and manipulation of sleep in C. elegans reveals depolarization of a sleep-active neuron during mechanical stimulation-induced sleep deprivation. Scientific reports, 8(1), 9732. https://doi.org/10.1038/s41598-018-28095-5
  • Stiernagle, T. (2006). Maintenance of C. elegans. WormBook : The Online Review of. C. Elegans Biology, doi:10.1895/wormbook.1.101.1
  • Takahashi, M., & Takagi, S. (2017). Optical silencing of body wall muscles induces pumping inhibition in Caenorhabditis elegans. PLoS Genetics, 13(12), e1007134. doi:10.1371/journal.pgen.1007134
  • Turek, M., Besseling, J., & Bringmann, H. (2015). Agarose microchambers for long-term calcium imaging of caenorhabditis elegans. J Vis Exp, (100), e52742. doi:10.3791/52742
  • Turek, M., Lewandrowski, I., & Bringmann, H. (2013). An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr. Biol, 23(22), 2215–2223. doi:10.1016/j.cub.2013.09.028
  • Van Buskirk, C., & Sternberg, P.W. (2007). Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature Neuroscience, 10(10), 1300–1307. doi:10.1038/nn1981
  • Ward, A., Liu, J., Feng, Z., & Xu, X.Z.S. (2008). Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nature Neuroscience, 11(8), 916–922. doi:10.1038/nn.2155
  • Wu, Y., Masurat, F., Preis, J., & Bringmann, H. (2018). Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans. Current Biology, 28(22), 3610–3624.e8. doi:10.1016/j.cub.2018.10.009
  • Xu, S., & Chisholm, A.D. (2016). Highly efficient optogenetic cell ablation in C. Elegans using membrane-targeted miniSOG. Scientific Reports, 6, 21271. doi:10.1038/srep21271
  • Zheng, Y., Brockie, P.J., Mellem, J.E., Madsen, D.M., & Maricq, A.V. (1999). Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor. Neuron, 24(2), 347–361. doi:10.1016/S0896-6273(00)80849-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.