1,027
Views
6
CrossRef citations to date
0
Altmetric
Section 6: Survival, aging and disease

Neuroendocrine control of lipid metabolism: lessons from C. elegans

Pages 482-488 | Received 17 Feb 2020, Accepted 28 May 2020, Published online: 03 Jul 2020

References

  • Alkema, M.J., Hunter-Ensor, M., Ringstad, N., & Horvitz, H.R. (2005). Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron, 46(2), 247–260. doi:10.1016/j.neuron.2005.02.024
  • Bargmann, C.I. (2006). Chemosensation in C. elegans. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org.
  • Bernard, C. (1927). An introduction to the study of experimental medicine. New York, NY: MacMillan and Co.
  • Brewer, J.C., Olson, A.C., Collins, K.M., & Koelle, M.R. (2019). Serotonin and neuropeptides are both released by the HSN command neuron to initiate Caenorhabditis elegans egg laying. PLoS Genetics, 15(1), e1007896. doi:10.1371/journal.pgen.1007896
  • Cannon, W. (1939). The wisdom of the body. New York, NY: Norton & Company.
  • C. elegans Sequencing Consortium. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282, 2012–2018. doi:10.1126/science.282.5396.2012
  • Chalasani, S.H., Chronis, N., Tsunozaki, M., Gray, J.M., Ramot, D., Goodman, M.B., & Bargmann, C.I. (2007). Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature, 450(7166), 63–70. doi:10.1038/nature06292
  • Coulson, A., Sulston, J., Brenner, S., & Karn, J. (1986). Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 83(20), 7821–7825. doi:10.1073/pnas.83.20.7821
  • Cunningham, K.A., Hua, Z., Srinivasan, S., Liu, J., Lee, B.H., Edwards, R.H., & Ashrafi, K. (2012). AMP-activated kinase links serotonergic signaling to glutamate release for regulation of feeding behavior in C. elegans. Cell Metabolism, 16(1), 113–121. doi:10.1016/j.cmet.2012.05.014
  • Davenport, C.B. (1923). Body build and its inheritance. Proceedings of the National Academy of Sciences of the United States of America, 9(7), 226–230. doi:10.1073/pnas.9.7.226
  • de Bono, M., & Bargmann, C.I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94(5), 679–689. doi:10.1016/S0092-8674(00)81609-8
  • Ding, S.S., Romenskyy, M., Sarkisyan, K.S., & Brown, A.E.X. (2020). Measuring Caenorhabditis elegans spatial foraging and food intake using bioluminescent bacteria. Genetics, 214(3), 577–587. doi:10.1534/genetics.119.302804
  • Ding, Y., Zhang, S., Yang, L., Na, H., Zhang, P., Zhang, H., … Huo, C. (2013). Isolating lipid droplets from multiple species. Nature Protocols, 8(1), 43–51. doi:10.1038/nprot.2012.142
  • Durieux, J., Wolff, S., & Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell, 144(1), 79–91. doi:10.1016/j.cell.2010.12.016
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. doi:10.1038/35888
  • Gray, J.M., Karow, D.S., Lu, H., Chang, A.J., Chang, J.S., Ellis, R.E., … Bargmann, C.I. (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, 430(6997), 317–322. doi:10.1038/nature02714
  • Greer, E.R., Perez, C.L., Van Gilst, M.R., Lee, B.H., & Ashrafi, K. (2008). Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metabolism, 8(2), 118–131. doi:10.1016/j.cmet.2008.06.005
  • Guillemin, R. (2013). A conversation with Roger Guillemin. Interview by Greg Lemke. Annual Review of Physiology, 75, 1–22. doi:10.1146/annurev-physiol-082712-104641
  • Hardaker, L.A., Singer, E., Kerr, R., Zhou, G., & Schafer, W.R. (2001). Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. Journal of Neurobiology, 49(4), 303–313. doi:10.1002/neu.10014
  • Hobert, O. (2013). The neuronal genome of Caenorhabditis elegans. WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.7.1, http://www.wormbook.org.
  • Horvitz, H.R., Chalfie, M., Trent, C., Sulston, J.E., & Evans, P.D. (1982). Serotonin and octopamine in the nematode Caenorhabditis elegans. Science, 216(4549), 1012–1014. doi:10.1126/science.6805073
  • Hussey, R., Littlejohn, N.K., Witham, E., Vanstrum, E., Mesgarzadeh, J., Ratanpal, H., & Srinivasan, S. (2018). Oxygen-sensing neurons reciprocally regulate peripheral lipid metabolism via neuropeptide signaling in Caenorhabditis elegans. PLoS Genetics, 14(3), e1007305. doi:10.1371/journal.pgen.1007305
  • Hussey, R., Stieglitz, J., Mesgarzadeh, J., Locke, T.T., Zhang, Y.K., Schroeder, F.C., & Srinivasan, S. (2017). Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans. PLoS Genetics, 13(5), e1006806. doi:10.1371/journal.pgen.1006806
  • Jang, H., Kim, K., Neal, S.J., Macosko, E., Kim, D., Butcher, R.A., … Sengupta, P. (2012). Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron, 75(4), 585–592. doi:10.1016/j.neuron.2012.06.034
  • Jansen, G., Thijssen, K.L., Werner, P., van der Horst, M., Hazendonk, E., & Plasterk, R.H. (1999). The complete family of genes encoding G proteins of Caenorhabditis elegans. Nature Genetics, 21(4), 414–419. doi:10.1038/7753
  • Kamath, R.S., & Ahringer, J. (2003). Genome-wide RNAi screening in Caenorhabditis elegans. Methods, 30(4), 313–321. doi:10.1016/S1046-2023(03)00050-1
  • Koopman, M., Michels, H., Dancy, B.M., Kamble, R., Mouchiroud, L., Auwerx, J., … Houtkooper, R.H. (2016). A screening-based platform for the assessment of cellular respiration in Caenorhabditis elegans. Nature Protocols, 11(10), 1798–1816. doi:10.1038/nprot.2016.106
  • Ludewig, A.H., & Schroeder, F.C. (2013). Ascaroside signaling in C. elegans. WormBook, 1–22. doi:10.1895/wormbook.1.155.1
  • Lynn, D.A., Dalton, H.M., Sowa, J.N., Wang, M.C., Soukas, A.A., & Curran, S.P. (2015). Omega-3 and -6 fatty acids allocate somatic and germline lipids to ensure fitness during nutrient and oxidative stress in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15378–15383. doi:10.1073/pnas.1514012112
  • Mak, H.Y., Nelson, L.S., Basson, M., Johnson, C.D., & Ruvkun, G. (2006). Polygenic control of Caenorhabditis elegans fat storage. Nature Genetics, 38(3), 363–368. doi:10.1038/ng1739
  • Mertens, I., Clinckspoor, I., Janssen, T., Nachman, R., & Schoofs, L. (2006). FMRFamide related peptide ligands activate the Caenorhabditis elegans orphan GPCR Y59H11AL.1. Peptides, 27(6), 1291–1296. doi:10.1016/j.peptides.2005.11.017
  • Mertens, I., Vandingenen, A., Meeusen, T., Janssen, T., Luyten, W., Nachman, R.J., … Schoofs, L. (2004). Functional characterization of the putative orphan neuropeptide G-protein coupled receptor C26F1.6 in Caenorhabditis elegans. FEBS Letters, 573(1–3), 55–60. doi:10.1016/j.febslet.2004.07.058
  • Narbonne, P., & Roy, R. (2009). Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature, 457(7226), 210–214. doi:10.1038/nature07536
  • Noble, T., Stieglitz, J., & Srinivasan, S. (2013). An integrated serotonin and octopamine neuronal circuit directs the release of an endocrine signal to control C. elegans body fat. Cell Metabolism, 18(5), 672–684. doi:10.1016/j.cmet.2013.09.007
  • Palamiuc, L., Noble, T., Witham, E., Ratanpal, H., Vaughan, M., & Srinivasan, S. (2017). A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism. Nature Communications, 8, 14237. doi:10.1038/ncomms14237
  • Ravussin, Y., Leibel, R.L., & Ferrante, A.W., Jr. (2014). A missing link in body weight homeostasis: The catabolic signal of the overfed state. Cell Metabolism, 20(4), 565–572. doi:10.1016/j.cmet.2014.09.002
  • Rhoades, J.L., Nelson, J.C., Nwabudike, I., Yu, S.K., McLachlan, I.G., Madan, G.K., … Flavell, S.W. (2019). ASICs mediate food responses in an enteric serotonergic neuron that controls foraging behaviors. Cell, 176(1–2), 85.e14–97.e14. doi:10.1016/j.cell.2018.11.023
  • Ringstad, N. (2016). A controlled burn: Sensing oxygen to tune fat metabolism. Cell Reports, 14(7), 1569–1570. doi:10.1016/j.celrep.2016.02.015
  • Ringstad, N., & Horvitz, H.R. (2008). FMRFamide neuropeptides and acetylcholine synergistically inhibit egg-laying by C. elegans. Nature Neuroscience, 11(10), 1168–1176. doi:10.1038/nn.2186
  • Ristow, M., & Zarse, K. (2010). How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis). Experimental Gerontology, 45(6), 410–418. doi:10.1016/j.exger.2010.03.014
  • Sawin, E.R., Ranganathan, R., & Horvitz, H.R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron, 26(3), 619–631. doi:10.1016/S0896-6273(00)81199-X
  • Soukas, A.A., Kane, E.A., Carr, C.E., Melo, J.A., & Ruvkun, G. (2009). Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans. Genes & Development, 23(4), 496–511. doi:10.1101/gad.1775409
  • Srinivasan, S. (2015). Neuroendocrine control of body fat in Caenorhabditis elegans. Annual Reviews in Physiology, 77(1), 161–178.
  • Srinivasan, S., Sadegh, L., Elle, I.C., Christensen, A.G., Faergeman, N.J., & Ashrafi, K. (2008). Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metabolism, 7(6), 533–544. doi:10.1016/j.cmet.2008.04.012
  • Steinhoff, M.S., von Mentzer, B., Geppetti, P., Pothoulakis, C., & Bunnett, N.W. (2014). Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease. Physiological Reviews, 94(1), 265–301. doi:10.1152/physrev.00031.2013
  • Sulston, J.E., & Brenner, S. (1974). The DNA of Caenorhabditis elegans. Genetics, 77(1), 95–104.
  • Sze, J.Y., Victor, M., Loer, C., Shi, Y., & Ruvkun, G. (2000). Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature, 403(6769), 560–564. doi:10.1038/35000609
  • Tam, J., Fukumura, D., & Jain, R.K. (2009). A mathematical model of murine metabolic regulation by leptin: Energy balance and defense of a stable body weight. Cell Metabolism, 9(1), 52–63. doi:10.1016/j.cmet.2008.11.005
  • Tatum, M.C., Ooi, F.K., Chikka, M.R., Chauve, L., Martinez-Velazquez, L.A., Steinbusch, H.W.M., … Prahlad, V. (2015). Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Current Biology, 25(2), 163–174. doi:10.1016/j.cub.2014.11.040
  • Wade, G.N., & Gray, J.M. (1979). Gonadal effects on food intake and adiposity: A metabolic hypothesis. Physiology & Behavior, 22(3), 583–593. doi:10.1016/0031-9384(79)90028-3
  • Walker, A.K., Jacobs, R.L., Watts, J.L., Rottiers, V., Jiang, K., Finnegan, D.M., … Niebergall, L.J. (2011). A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell, 147(4), 840–852. doi:10.1016/j.cell.2011.09.045
  • Walley, A.J., Blakemore, A.I., & Froguel, P. (2006). Genetics of obesity and the prediction of risk for health. Human Molecular Genetics, 15(2), R124–R130. doi:10.1093/hmg/ddl215
  • Ward, Z.J., Bleich, S.N., Cradock, A.L., Barrett, J.L., Giles, C.M., Flax, C., … Gortmaker, S.L. (2019). Projected U.S. state-level prevalence of adult obesity and severe obesity. New England Journal of Medicine, 381(25), 2440–2450. doi:10.1056/NEJMsa1909301
  • Waterston, R., & Sulston, J. (1995). The genome of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 10836–10840. doi:10.1073/pnas.92.24.10836
  • Watts, J.L., & Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 99(9), 5854–5859. doi:10.1073/pnas.092064799
  • Wirtshafter, D., & Davis, J.D. (1977). Set points, settling points, and the control of body weight. Physiology & Behavior, 19(1), 75–78. doi:10.1016/0031-9384(77)90162-7
  • Witham, E., Comunian, C., Ratanpal, H., Skora, S., Zimmer, M., & Srinivasan, S. (2016). C. elegans body cavity neurons are homeostatic sensors that integrate fluctuations in oxygen availability and internal nutrient reserves. Cell Reports, 14(7), 1641–1654. doi:10.1016/j.celrep.2016.01.052
  • Woodhouse, R. (2008). Obesity in art: A brief overview. Frontiers of Hormone Research, 36, 271–286. doi:10.1159/000115370
  • Wu, Z., Isik, M., Moroz, N., Steinbaugh, M.J., Zhang, P., & Blackwell, T.K. (2019). Dietary restriction extends lifespan through metabolic regulation of innate immunity. Cell Metabolism, 29(5), 1192–1205. doi:10.1016/j.cmet.2019.02.013
  • Zhang, Y., Lu, H., & Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438(7065), 179–184. doi:10.1038/nature04216
  • Zhu, H., & Han, M. (2014). Exploring developmental and physiological functions of fatty acid and lipid variants through worm and fly genetics. Annual Review of Genetics, 48, 119–148. doi:10.1146/annurev-genet-041814-095928
  • Zimmer, M., Gray, J.M., Pokala, N., Chang, A.J., Karow, D.S., Marletta, M.A., … Bargmann, C.I. (2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron, 61(6), 865–879. doi:10.1016/j.neuron.2009.02.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.