1,318
Views
10
CrossRef citations to date
0
Altmetric
Section 6: Survival, aging and disease

Regulatory systems that mediate the effects of temperature on the lifespan of Caenorhabditis elegans

, , &
Pages 518-526 | Received 14 Feb 2020, Accepted 08 Jun 2020, Published online: 07 Jul 2020

References

  • Alcedo, J., & Kenyon, C. (2004). Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron, 41(1), 45–55. doi:10.1016/S0896-6273(03)00816-X
  • Ali, M.M.U., Roe, S.M., Vaughan, C.K., Meyer, P., Panaretou, B., Piper, P.W., … Pearl, L.H. (2006). Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature, 440(7087), 1013–1017. doi:10.1038/nature04716
  • Altintas, O., Park, S., & Lee, S.J. (2016). The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Reports, 49(2), 81–92. doi:10.5483/bmbrep.2016.49.2.261
  • Anderson, J.L., Albergotti, L., Ellebracht, B., Huey, R.B., & Phillips, P.C. (2011). Does thermoregulatory behavior maximize reproductive fitness of natural isolates of Caenorhabditis elegans? BMC Evolutionary Biology, 11, 157. doi:10.1186/1471-2148-11-157
  • Antebi, A. (2013). Regulation of longevity by the reproductive system. Experimental Gerontology, 48(7), 596–602. doi:10.1016/j.exger.2012.09.009
  • Aparicio, R., Hansen, M., Walker, D.W., & Kumsta, C. (2020). The selective autophagy receptor SQSTM1/p62 improves lifespan and proteostasis in an evolutionarily conserved manner. Autophagy, 16(4), 772–774. doi:10.1080/15548627.2020.1725404
  • Apfeld, J., & Kenyon, C. (1999). Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature, 402(6763), 804–809. doi:10.1038/45544
  • Artan, M., Jeong, D.-E., Lee, D., Kim, Y.-I., Son, H.G., Husain, Z., … Lee, S.-J.V. (2016). Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes & Development, 30(9), 1047–1057. doi:10.1101/gad.279448.116
  • Barna, J., Csermely, P., & Vellai, T. (2018). Roles of heat shock factor 1 beyond the heat shock response. Cellular and Molecular Life Sciences, 75(16), 2897–2916. doi:10.1007/s00018-018-2836-6
  • Beverly, M., Anbil, S., & Sengupta, P. (2011). Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. The Journal of Neuroscience, 31(32), 11718–11727. doi:10.1523/jneurosci.1098-11.2011
  • Biron, D., Wasserman, S., Thomas, J.H., Samuel, A.D., & Sengupta, P. (2008). An olfactory neuron responds stochastically to temperature and modulates Caenorhabditis elegans thermotactic behavior. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 11002–11007. doi:10.1073/pnas.0805004105
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
  • Chatzigeorgiou, M., Yoo, S., Watson, J.D., Lee, W.-H., Spencer, W.C., Kindt, K.S., … Schafer, W.R. (2010). Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nature Neuroscience, 13(7), 861–868. doi:10.1038/nn.2581
  • Chen, Y., & Klionsky, D.J. (2011). The regulation of autophagy – Unanswered questions. Journal of Cell Science, 124(Pt 2), 161–170. doi:10.1242/jcs.064576
  • Chen, Y.C., Chen, H.J., Tseng, W.C., Hsu, J.M., Huang, T.T., Chen, C.H., & Pan, C.L. (2016). A C. elegans thermosensory circuit regulates longevity through crh-1/CREB-dependent flp-6 neuropeptide signaling. Developmental Cell, 39(2), 209–223. doi:10.1016/j.devcel.2016.08.021
  • Chen, Y.L., Tao, J., Zhao, P.J., Tang, W., Xu, J.P., Zhang, K.Q., & Zou, C.G. (2019). Adiponectin receptor PAQR-2 signaling senses low temperature to promote C. elegans longevity by regulating autophagy. Nature Communications, 10(1), 2602. doi:10.1038/s41467-019-10475-8
  • Conti, B., Sanchez-Alavez, M., Winsky-Sommerer, R., Morale, M.C., Lucero, J., Brownell, S., … Bartfai, T. (2006). Transgenic mice with a reduced core body temperature have an increased life span. Science (New York, N.Y.), 314(5800), 825–828. doi:10.1126/science.1132191
  • DiLoreto, R., & Murphy, C.T. (2015). The cell biology of aging. Molecular Biology of the Cell, 26(25), 4524–4531. doi:10.1091/mbc.E14-06-1084
  • Dupuy, D., Bertin, N., Hidalgo, C.A., Venkatesan, K., Tu, D., Lee, D., … Vidal, M. (2007). Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 25(6), 663–668. doi:10.1038/nbt1305
  • Echtenkamp, F.J., Zelin, E., Oxelmark, E., Woo, J.I., Andrews, B.J., Garabedian, M., & Freeman, B.C. (2011). Global functional map of the p23 molecular chaperone reveals an extensive cellular network. Molecular Cell, 43(2), 229–241. doi:10.1016/j.molcel.2011.05.029
  • Flatt, T., Min, K.-J., D'Alterio, C., Villa-Cuesta, E., Cumbers, J., Lehmann, R., … Tatar, M. (2008). Drosophila germ-line modulation of insulin signaling and lifespan. Proceedings of the National Academy of Sciences of the United States of America, 105(17), 6368–6373. doi:10.1073/pnas.0709128105
  • Freeman, B.C., Felts, S.J., Toft, D.O., & Yamamoto, K.R. (2000). The p23 molecular chaperones act at a late step in intracellular receptor action to differentially affect ligand efficacies. Genes & Development, 14(4), 422–434.
  • Freeman, B.C., & Yamamoto, K.R. (2002). Disassembly of transcriptional regulatory complexes by molecular chaperones. Science (New York, N.Y.), 296(5576), 2232–2235. doi:10.1126/science.1073051
  • Genest, O., Wickner, S., & Doyle, S.M. (2019). Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. The Journal of Biological Chemistry, 294(6), 2109–2120. doi:10.1074/jbc.REV118.002806
  • Goodman, M.B., & Sengupta, P. (2019). How Caenorhabditis elegans senses mechanical stress, temperature, and other physical stimuli. Genetics, 212(1), 25–51. doi:10.1534/genetics.118.300241
  • Grad, I., McKee, T.A., Ludwig, S.M., Hoyle, G.W., Ruiz, P., Wurst, W., … Picard, D. (2006). The Hsp90 cochaperone p23 is essential for perinatal survival. Molecular and Cellular Biology, 26(23), 8976–8983. doi:10.1128/mcb.00734-06
  • Hansen, M., Rubinsztein, D.C., & Walker, D.W. (2018). Autophagy as a promoter of longevity: Insights from model organisms. Nature Reviews. Molecular Cell Biology, 19(9), 579–593. doi:10.1038/s41580-018-0033-y
  • Hedgecock, E.M., & Russell, R.L. (1975). Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 72(10), 4061–4065. doi:10.1073/pnas.72.10.4061
  • Holthuis, J.C., & Menon, A.K. (2014). Lipid landscapes and pipelines in membrane homeostasis. Nature, 510(7503), 48–57. doi:10.1038/nature13474
  • Horikawa, M., Sural, S., Hsu, A.L., & Antebi, A. (2015). Co-chaperone p23 regulates C. elegans lifespan in response to temperature. PLoS Genetics, 11(4), e1005023. doi:10.1371/journal.pgen.1005023
  • Inada, H., Ito, H., Satterlee, J., Sengupta, P., Matsumoto, K., & Mori, I. (2006). Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics, 172(4), 2239–2252. doi:10.1534/genetics.105.050013
  • Jeong, D.E., Artan, M., Seo, K., & Lee, S.J. (2012). Regulation of lifespan by chemosensory and thermosensory systems: Findings in invertebrates and their implications in mammalian aging. Frontiers in Genetics, 3, 218. doi:10.3389/fgene.2012.00218
  • Johnson, J.L., & Toft, D.O. (1994). A novel chaperone complex for steroid receptors involving heat shock proteins, immunophilins, and p23. The Journal of Biological Chemistry, 269(40), 24989–24993.
  • Karashima, Y., Talavera, K., Everaerts, W., Janssens, A., Kwan, K.Y., Vennekens, R., … Voets, T. (2009). TRPA1 acts as a cold sensor in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1273–1278. doi:10.1073/pnas.0808487106
  • Kenyon, C.J. (2010a). The genetics of ageing. Nature, 464(7288), 504–512. doi:10.1038/nature08980
  • Kenyon, C.J. (2010b). A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Annals of the New York Academy of Sciences, 1204, 156–162. doi:10.1111/j.1749-6632.2010.05640.x
  • Kindt, K.S., Viswanath, V., Macpherson, L., Quast, K., Hu, H., Patapoutian, A., & Schafer, W.R. (2007). Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nature Neuroscience, 10(5), 568–577. doi:10.1038/nn1886
  • Kuhara, A., Okumura, M., Kimata, T., Tanizawa, Y., Takano, R., Kimura, K.D., … Mori, I. (2008). Temperature sensing by an olfactory neuron in a circuit controlling behavior of C. elegans. Science (New York, N.Y.), 320(5877), 803–807. doi:10.1126/science.1148922
  • Lee, D., An, S.W.A., Jung, Y., Yamaoka, Y., Ryu, Y., Goh, G.Y.S., … Lee, S.-J.V. (2019). MDT-15/MED15 permits longevity at low temperature via enhancing lipidostasis and proteostasis. PLoS Biology, 17(8), e3000415. doi:10.1371/journal.pbio.3000415
  • Lee, H.J., Noormohammadi, A., Koyuncu, S., Calculli, G., Simic, M.S., Herholz, M., … Vilchez, D. (2019). Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nature Metabolism, 1(8), 790–810. doi:10.1038/s42255-019-0097-9
  • Lee, S.J., & Kenyon, C. (2009). Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Current Biology, 19(9), 715–722. doi:10.1016/j.cub.2009.03.041
  • Lee, Y., An, S.W.A., Artan, M., Seo, M., Hwang, A.B., Jeong, D.-E., … Lee, S.-J.V. (2015). Genes and pathways that influence longevity in Caenorhabditis elegans. In N. Mori & I. Mook-Jung (Eds.), Aging mechanisms: Longevity, metabolism, and brain aging (pp. 123–169). Tokyo: Springer.
  • Lovgren, A.K., Kovarova, M., & Koller, B.H. (2007). cPGES/p23 is required for glucocorticoid receptor function and embryonic growth but not prostaglandin E2 synthesis. Molecular and Cellular Biology, 27(12), 4416–4430. doi:10.1128/mcb.02314-06
  • Luo, L., Clark, D.A., Biron, D., Mahadevan, L., & Samuel, A.D. (2006). Sensorimotor control during isothermal tracking in Caenorhabditis elegans. The Journal of Experimental Biology, 209(Pt 23), 4652–4662. doi:10.1242/jeb.02590
  • Luo, L., Cook, N., Venkatachalam, V., Martinez-Velazquez, L.A., Zhang, X., Calvo, A.C., … Samuel, A.D.T. (2014). Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proceedings of the National Academy of Sciences of the United States of America, 111(7), 2776–2781. doi:10.1073/pnas.1315205111
  • Ma, D.K., Li, Z., Lu, A.Y., Sun, F., Chen, S., Rothe, M., … Horvitz, H.R. (2015). Acyl-CoA dehydrogenase drives heat adaptation by sequestering fatty acids. Cell, 161(5), 1152–1163. doi:10.1016/j.cell.2015.04.026
  • Min, K.J., Lee, C.K., & Park, H.N. (2012). The lifespan of Korean eunuchs. Current Biology: CB, 22(18), R792–R793. doi:10.1016/j.cub.2012.06.036
  • Minke, B., Wu, C., & Pak, W.L. (1975). Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature, 258(5530), 84–87. doi:10.1038/258084a0
  • Montell, C. (2011). The history of TRP channels, a commentary and reflection. Pflugers Archiv: European Journal of Physiology, 461(5), 499–506. doi:10.1007/s00424-010-0920-3
  • Montell, C., & Rubin, G.M. (1989). Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron, 2(4), 1313–1323. doi:10.1016/0896-6273(89)90069-X
  • Mori, I. (1999). Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. Annual Review of Genetics, 33, 399–422. doi:10.1146/annurev.genet.33.1.399
  • Mori, I., & Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 376(6538), 344–348. doi:10.1038/376344a0
  • Morimoto, R.I. (2011). The heat shock response: Systems biology of proteotoxic stress in aging and disease. Cold Spring Harbor Symposia on Quantitative Biology, 76, 91–99. doi:10.1101/sqb.2012.76.010637
  • Murphy, C.T., Lee, S.J., & Kenyon, C. (2007). Tissue entrainment by feedback regulation of insulin gene expression in the endoderm of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 19046–19050. doi:10.1073/pnas.0709613104
  • Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., … Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature, 424(6946), 277–283. doi:10.1038/nature01789
  • Nakatani, Y., Hokonohara, Y., Kakuta, S., Sudo, K., Iwakura, Y., & Kudo, I. (2007). Knockout mice lacking cPGES/p23, a constitutively expressed PGE2 synthetic enzyme, are peri-natally lethal. Biochemical and Biophysical Research Communications, 362(2), 387–392. doi:10.1016/j.bbrc.2007.07.180
  • Nishida, Y., Sugi, T., Nonomura, M., & Mori, I. (2011). Identification of the AFD neuron as the site of action of the CREB protein in Caenorhabditis elegans thermotaxis. EMBO Reports, 12(8), 855–862. doi:10.1038/embor.2011.120
  • Partridge, L., Gems, D., & Withers, D.J. (2005). Sex and death: What is the connection? Cell, 120(4), 461–472. doi:10.1016/j.cell.2005.01.026
  • Parzych, K.R., & Klionsky, D.J. (2014). An overview of autophagy: Morphology, mechanism, and regulation. Antioxidants & Redox Signaling, 20(3), 460–473. doi:10.1089/ars.2013.5371
  • Pearl, R. (1928). Experiments on Longevity. The Quarterly Review of Biology, 3(3), 391–407. doi:10.1086/394311
  • Prahlad, V., & Morimoto, R.I. (2011). Neuronal circuitry regulates the response of Caenorhabditis elegans to misfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 14204–14209. doi:10.1073/pnas.1106557108
  • Prahlad, V., Cornelius, T., & Morimoto, R.I. (2008). Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science (New York, N.Y.), 320(5877), 811–814. doi:10.1126/science.1156093
  • Protsiv, M., Ley, C., Lankester, J., Hastie, T., & Parsonnet, J. (2020). Decreasing human body temperature in the United States since the industrial revolution. eLife, 9, e49555. doi:10.7554/eLife.49555
  • Ramot, D., MacInnis, B.L., & Goodman, M.B. (2008). Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans. Nature Neuroscience, 11(8), 908–915. doi:10.1038/nn.2157
  • Roth, G.S., Lane, M.A., Ingram, D.K., Mattison, J.A., Elahi, D., Tobin, J.D., … Metter, E.J. (2002). Biomarkers of caloric restriction may predict longevity in humans. Science (New York, N.Y.), 297(5582), 811. doi:10.1126/science.1071851
  • Satterlee, J.S., Ryu, W.S., & Sengupta, P. (2004). The CMK-1 CaMKI and the TAX-4 cyclic nucleotide-gated channel regulate thermosensory neuron gene expression and function in C. elegans. Current Biology, 14(1), 62–68. doi:10.1016/j.cub.2003.12.030
  • Simonsick, E.M., Meier, H.C.S., Shaffer, N.C., Studenski, S.A., & Ferrucci, L. (2016). Basal body temperature as a biomarker of healthy aging. Age (Dordrecht, Netherlands), 38(5–6), 445–454. doi:10.1007/s11357-016-9952-8
  • Son, H.G., Altintas, O., Kim, E.J.E., Kwon, S., & Lee, S.V. (2019). Age-dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell, 18(2), e12853. doi:10.1111/acel.12853
  • Story, G.M., Peier, A.M., Reeve, A.J., Eid, S.R., Mosbacher, J., Hricik, T.R., … Patapoutian, A. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112(6), 819–829. doi:10.1016/S0092-8674(03)00158-2
  • Sulston, J.E., Schierenberg, E., White, J.G., & Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100(1), 64–119. doi:10.1016/0012-1606(83)90201-4
  • Svensk, E., Stahlman, M., Andersson, C.H., Johansson, M., Boren, J., & Pilon, M. (2013). PAQR-2 regulates fatty acid desaturation during cold adaptation in C. elegans. PLoS Genetics, 9(9), e1003801. doi:10.1371/journal.pgen.1003801
  • Tatum, M.C., Ooi, F.K., Chikka, M.R., Chauve, L., Martinez-Velazquez, L.A., Steinbusch, H.W.M., … Prahlad, V. (2015). Neuronal serotonin release triggers the heat shock response in C. elegans in the absence of temperature increase. Current Biology, 25(2), 163–174. doi:10.1016/j.cub.2014.11.040
  • Taubert, S., Van Gilst, M.R., Hansen, M., & Yamamoto, K.R. (2006). A mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes & Development, 20(9), 1137–1149. doi:10.1101/gad.1395406
  • Van Gilst, M.R., Hadjivassiliou, H., Jolly, A., & Yamamoto, K.R. (2005). Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans. PLoS Biology, 3(2), e53. doi:10.1371/journal.pbio.0030053
  • Venkatachalam, K., & Montell, C. (2007). TRP channels. Annual Review of Biochemistry, 76, 387–417. doi:10.1146/annurev.biochem.75.103004.142819
  • Vozdek, R., Hnizda, A., Krijt, J., Kostrouchova, M., & Kozich, V. (2012). Novel structural arrangement of nematode cystathionine β-synthases: Characterization of Caenorhabditis elegans CBS-1. The Biochemical Journal, 443(2), 535–547. doi:10.1042/bj20111478
  • Ward, S., Thomson, N., White, J.G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. The Journal of Comparative Neurology, 160(3), 313–337. doi:10.1002/cne.901600305
  • Wasserman, S.M., Beverly, M., Bell, H.W., & Sengupta, P. (2011). Regulation of response properties and operating range of the AFD thermosensory neurons by cGMP signaling. Current Biology: CB, 21(5), 353–362. doi:10.1016/j.cub.2011.01.053
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056
  • Wong, S.Q., Kumar, A.V., Mills, J., & Lapierre, L.R. (2020). Autophagy in aging and longevity. Human Genetics, 139(3), 277–290. doi:10.1007/s00439-019-02031-7
  • Xiao, R., Liu, J., & Xu, X.Z. (2015). Thermosensation and longevity. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 201(9), 857–867. doi:10.1007/s00359-015-1021-8
  • Xiao, R., & Xu, X.Z. (2011). C. elegans TRP channels. Advances in Experimental Medicine and Biology, 704, 323–339. doi:10.1007/978-94-007-0265-3_18
  • Xiao, R., Zhang, B., Dong, Y., Gong, J., Xu, T., Liu, J., & Xu, X.Z. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell, 152(4), 806–817. doi:10.1016/j.cell.2013.01.020
  • Yang, F., Vought, B.W., Satterlee, J.S., Walker, A.K., Jim Sun, Z.-Y., Watts, J.L., … Näär, A.M. (2006). An ARC/mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature, 442(7103), 700–704. doi:10.1038/nature04942
  • Yang, Y., & Klionsky, D.J. (2020). Autophagy and disease: Unanswered questions. Cell Death and Differentiation, 27(3), 858–871. doi:10.1038/s41418-019-0480-9
  • Yu, Y.V., Bell, H.W., Glauser, D., Van Hooser, S.D., Goodman, M.B., & Sengupta, P. (2014). CaMKI-dependent regulation of sensory gene expression mediates experience-dependent plasticity in the operating range of a thermosensory neuron. Neuron, 84(5), 919–926. doi:10.1016/j.neuron.2014.10.046
  • Zhang, B., Gong, J., Zhang, W., Xiao, R., Liu, J., & Xu, X.Z.S. (2018). Brain-gut communications via distinct neuroendocrine signals bidirectionally regulate longevity in C. elegans. Genes & Development, 32(3–4), 258–270. doi:10.1101/gad.309625.117
  • Zhang, B., Xiao, R., Ronan, E.A., He, Y., Hsu, A.L., Liu, J., & Xu, X.Z. (2015). Environmental temperature differentially modulates C. elegans longevity through a thermosensitive TRP channel. Cell Reports, 11(9), 1414–1424. doi:10.1016/j.celrep.2015.04.066
  • Zou, J., Guo, Y., Guettouche, T., Smith, D.F., & Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94(4), 471–480. doi:10.1016/S0092-8674(00)81588-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.