3,917
Views
9
CrossRef citations to date
0
Altmetric
Section 2: Nervous system development

Cell-type-specific promoters for C. elegans glia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 335-346 | Received 28 Feb 2020, Accepted 08 Jun 2020, Published online: 22 Jul 2020

References

  • Bacaj, T., Tevlin, M., Lu, Y., & Shaham, S. (2008). Glia are essential for sensory organ function in C. elegans. Science (New York, N.Y.), 322 (5902), 744–747. doi:10.1126/science.1163074
  • Bargmann, C.I. (2006). Chemosensation in C. elegans. In The C. elegans Research Community (Ed.), WormBook: The Online Review of C. elegans Biology (1–29). doi:10.1895/wormbook.1.123.1
  • Bargmann, C.I., & Avery, L. (1995). Laser killing of cells in Caenorhabditis elegans. Methods in Cell Biology, 48, 225–250. doi:10.1016/s0091-679x(08)61390-4
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77 (1), 71–94
  • Braunreiter, K., Hamlin, S., & Lyman-Gingerich, J. (2014). Identification and characterization of a novel allele of Caenorhabditis elegans bbs-7. PloS One, 9 (12), e113737. doi:10.1371/journal.pone.0113737
  • Cebul, E.R., McLachlan, I.G., & Heiman, M.G. (2020). Dendrites with specialized glial attachments develop by retrograde extension using SAX-7 and GRDN-1. Development (Cambridge, England), 147 (4), dev180448. doi:10.1242/dev.180448
  • Cianciulli, A., Yoslov, L., Buscemi, K., Sullivan, N., Vance, R.T., Janton, F., … Nelson, M.D. (2019). Interneurons regulate locomotion quiescence via cyclic adenosine monophosphate signaling during stress-induced sleep in Caenorhabditis elegans. Genetics, 213 (1), 267–279. doi:10.1534/genetics.119.302293
  • Colón-Ramos, D.A., Margeta, M.A., & Shen, K. (2007). Glia promote local synaptogenesis through UNC-6 (netrin) signaling in C. elegans. Science (New York, N.Y.), 318 (5847), 103–106. doi:10.1126/science.1143762
  • Ding, G., Zou, W., Zhang, H., Xue, Y., Cai, Y., Huang, G., … Kang, L. (2015). In vivo tactile stimulation-evoked responses in Caenorhabditis elegans amphid sheath glia. PloS One, 10 (2), e0117114. doi:10.1371/journal.pone.0117114
  • Fenk, L.A., & de Bono, M. (2015). Environmental CO2 inhibits Caenorhabditis elegans egg-laying by modulating olfactory neurons and evokes widespread changes in neural activity. Proceedings of the National Academy of Sciences of the United States of America, 112 (27), E3525–3534. doi:10.1073/pnas.1423808112
  • Gibson, C.L., Balbona, J.T., Niedzwiecki, A., Rodriguez, P., Nguyen, K.C.Q., Hall, D.H., & Blakely, R.D. (2018). Glial loss of the metallo β-lactamase domain containing protein, SWIP-10, induces age- and glutamate-signaling dependent, dopamine neuron degeneration. PLoS Genetics, 14 (3), e1007269. doi:10.1371/journal.pgen.1007269
  • Gower, N.J., Temple, G.R., Schein, J.E., Marra, M., Walker, D.S., & Baylis, H.A. (2001). Dissection of the promoter region of the inositol 1,4,5-trisphosphate receptor gene, itr-1, in C. elegans: A molecular basis for cell-specific expression of IP3R isoforms. Journal of Molecular Biology, 306 (2), 145–157. doi:10.1006/jmbi.2000.4388
  • Grant, J., Matthewman, C., & Bianchi, L. (2015). A novel mechanism of pH buffering in C. elegans Glia: bicarbonate transport via the voltage-gated ClC Cl-channel CLH-1. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35 (50), 16377–16397. doi:10.1523/JNEUROSCI.3237-15.2015
  • Haklai-Topper, L., Soutschek, J., Sabanay, H., Scheel, J., Hobert, O., & Peles, E. (2011). The neurexin superfamily of Caenorhabditis elegans. Gene Expression Patterns : GEP, 11 (1–2), 144–150. doi:10.1016/j.gep.2010.10.008
  • Han, L., Wang, Y., Sangaletti, R., D'Urso, G., Lu, Y., Shaham, S., & Bianchi, L. (2013). Two novel DEG/ENaC channel subunits expressed in glia are needed for nose-touch sensitivity in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33 (3), 936–949. doi:10.1523/JNEUROSCI.2749-12.2013
  • Hao, L., Johnsen, R., Lauter, G., Baillie, D., & Bürglin, T.R. (2006). Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics, 7, 280. doi:10.1186/1471-2164-7-280
  • Hardaway, J.A., Sturgeon, S.M., Snarrenberg, C.L., Li, Z., Xu, X.Z.S., Bermingham, D.P., … Blakely, R.D. (2015). Glial expression of the Caenorhabditis elegans gene swip-10 supports glutamate dependent control of extrasynaptic dopamine signaling. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 35 (25), 9409–9423. doi:10.1523/JNEUROSCI.0800-15.2015
  • Heiman, M.G., & Shaham, S. (2009). DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell, 137 (2), 344–355. doi:10.1016/j.cell.2009.01.057
  • Hunt-Newbury, R., Viveiros, R., Johnsen, R., Mah, A., Anastas, D., Fang, L., … Moerman, D.G. (2007). High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biology, 5 (9), e237. doi:10.1371/journal.pbio.0050237
  • Ji, T., Wang, K., Fan, J., Huang, J., Wang, M., Dong, X., … Colón-Ramos, D.A. (2019). ADAMTS-family protease MIG-17 regulates synaptic allometry by modifying the extracellular matrix and modulating glia morphology during growth (preprint). Neuroscience. doi:10.1101/734830
  • Johnson, A.D., Fitzsimmons, D., Hagman, J., & Chamberlin, H.M. (2001). EGL-38 Pax regulates the ovo-related gene lin-48 during Caenorhabditis elegans organ development. Development (Cambridge, England), 128, 2857–2865.
  • Kage-Nakadai, E., Ohta, A., Ujisawa, T., Sun, S., Nishikawa, Y., Kuhara, A., & Mitani, S. (2016). Caenorhabditis elegans homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance. Genes Cells, 21 (9), 936–948. doi:10.1111/gtc.12394
  • Kage-Nakadai, E., Uehara, T., & Mitani, S. (2011). H+/myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmoprotective response in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 410 (3), 471–477. doi:10.1016/j.bbrc.2011.06.001
  • Katz, M., Corson, F., Iwanir, S., Biron, D., & Shaham, S. (2018). Glia modulate a neuronal circuit for locomotion suppression during sleep in C. elegans. Cell Reports, 22 (10), 2575–2583. doi:10.1016/j.celrep.2018.02.036
  • Low, I.I.C., Williams, C.R., Chong, M.K., McLachlan, I.G., Wierbowski, B.M., Kolotuev, I., & Heiman, M.G. (2019). Morphogenesis of neurons and glia within an epithelium. Development (Cambridge, England), 146 (4), dev171124. doi:10.1242/dev.171124
  • McMiller, T.L., & Johnson, C.M. (2005). Molecular characterization of HLH-17, a C. elegans bHLH protein required for normal larval development. Gene, 356, 1–10. doi:10.1016/j.gene.2005.05.003
  • McQuary, P.R., Liao, C.-Y., Chang, J.T., Kumsta, C., She, X., Davis, A., … Hansen, M. (2016). C. elegans S6K mutants require a creatine-kinase-like effector for lifespan extension. Cell Reports, 14 (9), 2059–2067. doi:10.1016/j.celrep.2016.02.012
  • Mizeracka, K., & Heiman, M.G. (2015). The many glia of a tiny nematode: studying glial diversity using Caenorhabditis elegans. Wiley Interdisciplinary Reviews. Developmental Biology, 4 (2), 151–160. doi:10.1002/wdev.171
  • Mizeracka, K., Rogers, J.M., Shaham, S., Bulyk, M.L., & Heiman, M.G. (2019). Lineage-specific control of convergent cell identity by a Forkhead repressor (preprint). Developmental Biology. doi:10.1101/758508
  • Molina-García, L., Cook, S.J., Kim, B., Bonnington, R., Sammut, M., O’Shea, J., … Poole, R.J. (2018). A direct glia-to-neuron natural transdifferentiation ensures nimble sensory-motor coordination of male mating behaviour (preprint). Neuroscience. doi:10.1101/285320
  • Moussaif, M., & Sze, J.Y. (2009). Intraflagellar transport/Hedgehog-related signaling components couple sensory cilium morphology and serotonin biosynthesis in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29 (13), 4065–4075. doi:10.1523/JNEUROSCI.0044-09.2009
  • Nelson, F.K., & Riddle, D.L. (1984). Functional study of the Caenorhabditis elegans secretory-excretory system using laser microsurgery. The Journal of Experimental Zoology, 231 (1), 45–56. doi:10.1002/jez.1402310107
  • Nonet, M.L., Staunton, J.E., Kilgard, M.P., Fergestad, T., Hartwieg, E., Horvitz, H.R., … Meyer, B.J. (1997). Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 17 (21), 8061–8073. doi:10.1523/JNEUROSCI.17-21-08061.1997
  • Ohkura, K., & Bürglin, T.R. (2011). Dye-filling of the amphid sheath glia: Implications for the functional relationship between sensory neurons and glia in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 406 (2), 188–193. doi:10.1016/j.bbrc.2011.02.003
  • Oikonomou, G., Perens, E.A., Lu, Y., & Shaham, S. (2012). Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Developmental Biology, 362 (1), 42–49. doi:10.1016/j.ydbio.2011.11.009
  • Oikonomou, G., Perens, E.A., Lu, Y., Watanabe, S., Jorgensen, E.M., & Shaham, S. (2011). Opposing activities of LIT-1/NLK and DAF-6/patched-related direct sensory compartment morphogenesis in C. elegans. PLoS Biology, 9 (8), e1001121. doi:10.1371/journal.pbio.1001121
  • Packer, J.S., Zhu, Q., Huynh, C., Sivaramakrishnan, P., Preston, E., Dueck, H., … Murray, J.I. (2019). A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science, 365(6459), eaax1971. doi:10.1126/science.aax1971
  • Perens, E.A., & Shaham, S. (2005). C. elegans daf-6 encodes a patched-related protein required for lumen formation. Developmental Cell, 8 (6), 893–906. doi:10.1016/j.devcel.2005.03.009
  • Pierce, M.L., Weston, M.D., Fritzsch, B., Gabel, H.W., Ruvkun, G., & Soukup, G.A. (2008). MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evolution & Development, 10 (1), 106–113. doi:10.1111/j.1525-142X.2007.00217.x
  • Popovici, C., Isnardon, D., Birnbaum, D., & Roubin, R. (2002). Caenorhabditis elegans receptors related to mammalian vascular endothelial growth factor receptors are expressed in neural cells Neuroscience Letters, 329 (1), 116–120. doi:10.1016/S0304-3940(02)00595-5
  • Procko, C., Lu, Y., & Shaham, S. (2011). Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development (Cambridge, England), 138 (7), 1371–1381. doi:10.1242/dev.058305
  • Procko, C., Lu, Y., & Shaham, S. (2012). Sensory organ remodeling in Caenorhabditis elegans requires the zinc-finger protein ZTF-16. Genetics, 190 (4), 1405–1415. doi:10.1534/genetics.111.137786
  • Rapti, G., Li, C., Shan, A., Lu, Y., & Shaham, S. (2017). Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans. Nature Neuroscience, 20 (10), 1350–1360. doi:10.1038/nn.4630
  • Sammut, M., Cook, S.J., Nguyen, K.C.Q., Felton, T., Hall, D.H., Emmons, S.W., … Barrios, A. (2015). Glia-derived neurons are required for sex-specific learning in C. elegans. Nature, 526 (7573), 385–390. doi:10.1038/nature15700
  • Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9 (7), 676–682. doi:10.1038/nmeth.2019
  • Shao, Z., Watanabe, S., Christensen, R., Jorgensen, E.M., & Colón-Ramos, D.A. (2013). Synapse location during growth depends on glia location. Cell, 154 (2), 337–350. doi:10.1016/j.cell.2013.06.028
  • Singhvi, A., Liu, B., Friedman, C.J., Fong, J., Lu, Y., Huang, X.-Y., & Shaham, S. (2016). A glial K/Cl transporter controls neuronal receptive ending shape by chloride inhibition of an rGC. Cell, 165 (4), 936–948. doi:10.1016/j.cell.2016.03.026
  • Singhvi, A., & Shaham, S. (2019). Glia-neuron interactions in Caenorhabditis elegans. Annual Review of Neuroscience, 42, 149–168. doi:10.1146/annurev-neuro-070918-050314
  • Stout, R.F., & Parpura, V. (2011). Voltage-gated calcium channel types in cultured C. elegans CEPsh glial cells. Cell Calcium, 50 (1), 98–108. doi:10.1016/j.ceca.2011.05.016
  • Stringham, E., Pujol, N., Vandekerckhove, J., & Bogaert, T. (2002). unc-53 controls longitudinal migration in C. elegans. Development (Cambridge, England), 129, 3367–3379.
  • Sundaram, M.V., & Buechner, M. (2016). The Caenorhabditis elegans excretory system: A model for tubulogenesis, cell fate specification, and plasticity. Genetics, 203 (1), 35–63. doi:10.1534/genetics.116.189357
  • Tanis, J.E., Bellemer, A., Moresco, J.J., Forbush, B., & Koelle, M.R. (2009). The potassium chloride cotransporter KCC-2 coordinates development of inhibitory neurotransmission and synapse structure in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 29 (32), 9943–9954. doi:10.1523/JNEUROSCI.1989-09.2009
  • Timbers, T.A., Garland, S.J., Mohan, S., Flibotte, S., Edgley, M., Muncaster, Q., … Leroux, M.R. (2016). Accelerating gene discovery by phenotyping whole-genome sequenced multi-mutation strains and using the sequence kernel association test (SKAT). PLoS Genetics, 12 (8), e1006235. doi:10.1371/journal.pgen.1006235
  • Tucker, M., Sieber, M., Morphew, M., & Han, M. (2005). The Caenorhabditis elegans aristaless orthologue, alr-1, is required for maintaining the functional and structural integrity of the amphid sensory organs. Molecular Biology of the Cell, 16 (10), 4695–4704. doi:10.1091/mbc.e05-03-0205
  • Wallace, S.W., Singhvi, A., Liang, Y., Lu, Y., & Shaham, S. (2016). PROS-1/Prospero is a major regulator of the glia-specific secretome controlling sensory-neuron shape and function in C. elegans. Cell Reports, 15 (3), 550–562. doi:10.1016/j.celrep.2016.03.051
  • Wang, Y., Apicella, A., Lee, S.-K., Ezcurra, M., Slone, R.D., Goldmit, M., … Bianchi, L. (2008). A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans. The EMBO Journal, 27 (18), 2388–2399. doi:10.1038/emboj.2008.161
  • Wang, Y., D'Urso, G., & Bianchi, L. (2012). Knockout of glial channel ACD-1 exacerbates sensory deficits in a C. elegans mutant by regulating calcium levels of sensory neurons. Journal of Neurophysiology, 107 (1), 148–158. doi:10.1152/jn.00299.2011
  • Wang, W., Perens, E.A., Oikonomou, G., Wallace, S.W., Lu, Y., & Shaham, S. (2017). IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans. Developmental Biology, 430 (1), 105–112. doi:10.1016/j.ydbio.2017.08.009
  • Ward, S., Thomson, N., White, J.G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.?2UU. The Journal of Comparative Neurology, 160 (3), 313–337. doi:10.1002/cne.901600305
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314 (1165), 1–340. doi:10.1098/rstb.1986.0056
  • Yang, W.-K., & Chien, C.-T. (2019). Beyond being innervated: the epidermis actively shapes sensory dendritic patterning. Open Biology, 9 (3), 180257. doi:10.1098/rsob.180257
  • Yin, J.-A., Gao, G., Liu, X.-J., Hao, Z.-Q., Li, K., Kang, X.-L., … Cai, S.-Q. (2017). Genetic variation in glia-neuron signalling modulates ageing rate. Nature, 551 (7679), 198–203. doi:10.1038/nature24463
  • Yip, Z.C., & Heiman, M.G. (2018). Ordered arrangement of dendrites within a C. elegans sensory nerve bundle. eLife, 7, e35825. doi:10.7554/eLife.35825
  • Yoshida, A., Nakano, S., Suzuki, T., Ihara, K., Higashiyama, T., & Mori, I. (2016). A glial K(+) /Cl(-) cotransporter modifies temperature-evoked dynamics in Caenorhabditis elegans sensory neurons. Genes, Brain, and Behavior, 15 (4), 429–440. doi:10.1111/gbb.12260
  • Yoshimura, S., Murray, J.I., Lu, Y., Waterston, R.H., & Shaham, S. (2008). mls-2 and vab-3 Control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development (Cambridge, England)), 135(13), 2263–2275. doi:10.1242/dev.019547