1,259
Views
7
CrossRef citations to date
0
Altmetric
Section 6: Survival, aging and disease

Neurogenetics of nictation, a dispersal strategy in nematodes

, , &
Pages 510-517 | Received 15 Feb 2020, Accepted 24 Jun 2020, Published online: 10 Jul 2020

References

  • Albert, P.S., & Riddle, D.L. (1983). Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva. The Journal of Comparative Neurology, 219(4), 461–481. doi:10.1002/cne.902190407
  • Baird, S.E. (1999). Natural and experimental associations of Caenorhabditis remanei with Trachelipus rathkii and other terrestrial isopods. Nematology, 1(5), 471–475. doi:10.1163/156854199508478
  • Bargmann, C.I., & Horvitz, H.R. (1991). Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science (New York, N.Y.), 251(4998), 1243–1246. doi:10.1126/science.2006412
  • Barriere, A., & Felix, M.A. (2005). High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Current Biology, 15(13), 1176–1184. doi:10.1016/j.cub.2005.06.022
  • Bhattacharya, A., Aghayeva, U., Berghoff, E.G., & Hobert, O. (2019). Plasticity of the electrical connectome of C. elegans. Cell, 176(5), 1174–1189.e16. doi:10.1016/j.cell.2018.12.024
  • Brown, F.D., D'Anna, I., & Sommer, R.J. (2011). Host-finding behaviour in the nematode Pristionchus pacificus. Proceedings. Biological Sciences, 278(1722), 3260–3269. doi:10.1098/rspb.2011.0129
  • Campbell, J.F., & Gaugler, R. (1993). Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (heterorhabditidae and steinernematidae). Behaviour, 126 (3-4), 155–169. doi:10.1163/156853993X00092
  • Campbell, J.F., & Kaya, H.K. (1999). How and why a parasitic nematode jumps. Nature, 397(6719), 485–486. doi:10.1038/17254
  • Campbell, J.F., & Kaya, H.K. (2000). Influence of insect associated cues on the jumping behavior of entomopathogenic nematodes (Steinernema spp.). Behaviour, 137(5), 591–609. doi:10.1163/156853900502231
  • Cassada, R.C., & Russell, R.L. (1975). The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Developmental Biology, 46(2), 326–342. doi:10.1016/0012-1606(75)90109-8
  • Castelletto, M.L., Gang, S.S., Okubo, R.P., Tselikova, A.A., Nolan, T.J., Platzer, E.G., … Hallem, E.A. (2014). Diverse host-seeking behaviors of skin-penetrating nematodes. PLoS Pathogens, 10(8), e1004305. doi:10.1371/journal.ppat.1004305
  • Colbert, H.A., Smith, T.L., & Bargmann, C.I. (1997). OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. The Journal of Neuroscience, 17(21), 8259–8269. doi:10.1523/JNEUROSCI.17-21-08259.1997
  • Crook, M. (2014). The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. International Journal for Parasitology, 44(1), 1–8. doi:10.1016/j.ijpara.2013.08.004
  • da Graca, L.S., Zimmerman, K.K., Mitchell, M.C., Kozhan-Gorodetska, M., Sekiewicz, K., Morales, Y., & Patterson, G.I. (2004). DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGFβ pathway to regulate C. elegans dauer development. Development, 131(2), 435–446. doi:10.1242/dev.00922
  • de la Torre-Ubieta, L., Gaudilliere, B., Yang, Y., Ikeuchi, Y., Yamada, T., DiBacco, S., … Bonni, A. (2010). A FOXO-Pak1 transcriptional pathway controls neuronal polarity. Genes & Development, 24(8), 799–813. doi:10.1101/gad.1880510
  • Dillon, J., Holden-Dye, L., O'Connor, V., & Hopper, N.A. (2016). Context-dependent regulation of feeding behaviour by the insulin receptor, DAF-2, in Caenorhabditis elegans. Invertebrate Neuroscience, 16(2), 4. doi:10.1007/s10158-016-0187-2
  • Dixon, S.J., Alexander, M., Chan, K.K., & Roy, P.J. (2008). Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Developmental Biology, 318(1), 153–161. doi:10.1016/j.ydbio.2008.03.019
  • Duret, L., Guex, N., Peitsch, M.C., & Bairoch, A. (1998). New insulin-like proteins with atypical disulfide bond pattern characterized in Caenorhabditis elegans by comparative sequence analysis and homology modeling. Genome Research, 8(4), 348–353. doi:10.1101/gr.8.4.348
  • Estevez, M., Attisano, L., Wrana, J.L., Albert, P.S., Massague, J., & Riddle, D.L. (1993). The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature, 365(6447), 644–649. doi:10.1038/365644a0
  • Felix, M.A., & Braendle, C. (2010). The natural history of Caenorhabditis elegans. Current Biology, 20(22), R965–R969. doi:10.1016/j.cub.2010.09.050
  • Felix, M.A., & Duveau, F. (2012). Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biology, 10(1), 59. doi:10.1186/1741-7007-10-59
  • Fernandes de Abreu, D.A., Caballero, A., Fardel, P., Stroustrup, N., Chen, Z., Lee, K., … Ch'ng, Q. (2014). An insulin-to-insulin regulatory network orchestrates phenotypic specificity in development and physiology. PLoS Genetics, 10(3), e1004225. doi:10.1371/journal.pgen.1004225
  • Frézal, L., & Felix, M.-A. (2015). The natural history of model organisms: C. elegans outside the Petri dish. eLife, 4, e05849. doi:10.7554/eLife.05849
  • Gans, C., & Burr, A.H.J. (1994). Unique locomotory mechanism of Mermis nigrescens, a large nematode that crawls over soil and climbs through vegetation. Journal of Morphology, 222(2), 133–148. doi:10.1002/jmor.1052220203
  • Gaugler, R., & Bilgrami, A.L. (2004). Nematode behaviour. Wallingford: CABI.
  • Georgi, L.L., Albert, P.S., & Riddle, D.L. (1990). daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell, 61(4), 635–645. doi:10.1016/0092-8674(90)90475-T
  • Golden, J.W., & Riddle, D.L. (1984a). The Caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Developmental Biology, 102(2), 368–378. doi:10.1016/0012-1606(84)90201-X
  • Golden, J.W., & Riddle, D.L. (1984b). A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proceedings of the National Academy of Sciences of the United States of America, 81(3), 819–823. doi:10.1073/pnas.81.3.819
  • Gottlieb, S., & Ruvkun, G. (1994). daf-2, daf-16 and daf-23: Genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics, 137(1), 107–120.
  • Granzer, M., & Haas, W. (1991). Host-finding and host recognition of infective Ancylostoma caninum larvae. International Journal for Parasitology, 21(4), 429–440. doi:10.1016/0020-7519(91)90100-L
  • Greer, E.R., Perez, C.L., Van Gilst, M.R., Lee, B.H., & Ashrafi, K. (2008). Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metabolism, 8(2), 118–131. doi:10.1016/j.cmet.2008.06.005
  • Gregoire, F.M., Chomiki, N., Kachinskas, D., & Warden, C.H. (1998). Cloning and developmental regulation of a novel member of the insulin-like gene family in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 249(2), 385–390. doi:10.1006/bbrc.1998.9164
  • Hallem, E.A., Dillman, A.R., Hong, A.V., Zhang, Y., Yano, J.M., DeMarco, S.F., & Sternberg, P.W. (2011). A sensory code for host seeking in parasitic nematodes. Current Biology, 21(5), 377–383. doi:10.1016/j.cub.2011.01.048
  • Hernandez, A.D., & Sukhdeo, M.V. (1995). Host grooming and the transmission strategy of Heligmosomoides polygyrus. The Journal of Parasitology, 81(6), 865–869. doi:10.2307/3284031
  • Hesling, J. (1966). Preliminary experiments on the control of mycophagous eelworms in mushroom beds, with a note on their swarming. Plant Pathology, 15(4), 163–166. doi:10.1111/j.1365-3059.1966.tb00342.x
  • Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H., Bongers, T., Holovachov, O., … Helder, J. (2006). Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Molecular Biology and Evolution, 23(9), 1792–1800. doi:10.1093/molbev/msl044
  • Hotez, P., Hawdon, J., & Schad, G.A. (1993). Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. Parasitology Today (Personal ed.), 9(1), 23–26. doi:10.1016/0169-4758(93)90159-D
  • Husson, S.J., Mertens, I., Janssen, T., Lindemans, M., & Schoofs, L. (2007). Neuropeptidergic signaling in the nematode Caenorhabditis elegans. Progress in Neurobiology, 82(1), 33–55. doi:10.1016/j.pneurobio.2007.01.006
  • Inoue, T., & Thomas, J.H. (2000). Targets of TGF-beta signaling in Caenorhabditis elegans dauer formation. Developmental Biology, 217(1), 192–204. doi:10.1006/dbio.1999.9545
  • Ishibashi, N., & Kondo, E. (1990). Behavior of infective juveniles (entomopathogenic nematodes in biological control (pp. 139–150). Boca Raton, FL: CRC Press.
  • Kanzaki, N., Kiontke, K., Tanaka, R., Hirooka, Y., Schwarz, A., Muller-Reichert, T., … Pires-daSilva, A. (2017). Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Scientific Reports, 7(1), 11135. doi:10.1038/s41598-017-09871-1
  • Kenyon, C., Chang, J., Gensch, E., Rudner, A., & Tabtiang, R. (1993). A C. elegans mutant that lives twice as long as wild type. Nature, 366(6454), 461–464. doi:10.1038/366461a0
  • Kim, K., & Li, C. (2004). Expression and regulation of an FMR famide-related neuropeptide gene family in Caenorhabditis elegans. Journal of Comparative Neurology, 475(4), 540–550. doi:10.1002/cne.20189
  • Kim, K.W., Tang, N.H., Andrusiak, M.G., Wu, Z., Chisholm, A.D., & Jin, Y. (2018). A neuronal piRNA pathway inhibits axon regeneration in C. elegans. Neuron, 97(3), 511–519 e516. doi:10.1016/j.neuron.2018.01.014
  • Kimura, K.D., Tissenbaum, H.A., Liu, Y., & Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science (New York, N.Y.), 277(5328), 942–946. doi:10.1126/science.277.5328.942
  • Kiontke, K. (1999). The Rhabditis (Rhabditella) octopleura species complex and descriptions of three new species. Russian Journal of Nematology, 7(2), 71–94.
  • Kiontke, K., & Sudhaus, W. (2006). Ecology of Caenorhabditis species. WormBook, 9, 1 –14. doi:10.1895/wormbook.1.37.1
  • Klass, M., & Hirsh, D. (1976). Non-ageing developmental variant of Caenorhabditis elegans. Nature, 260(5551), 523–525. doi:10.1038/260523a0
  • Kodama, E., Kuhara, A., Mohri-Shiomi, A., Kimura, K.D., Okumura, M., Tomioka, M., … Mori, I. (2006). Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. Genes & Development, 20(21), 2955–2960. doi:10.1101/gad.1479906
  • Kwon, E.S., Narasimhan, S.D., Yen, K., & Tissenbaum, H.A. (2010). A new DAF-16 isoform regulates longevity. Nature, 466(7305), 498–502. doi:10.1038/nature09184
  • Lee, D., Lee, H., Choi, M-k., Park, S., & Lee, J. (2015). Nictation assays for Caenorhabditis and other nematodes. Bioprotocol, 5, e1433. doi:10.21769/BioProtoc.1433
  • Lee, D., Lee, H., Kim, N., Lim, D.S., & Lee, J. (2017). Regulation of a hitchhiking behavior by neuronal insulin and TGF-β signaling in the nematode Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 484(2), 323–330. doi:10.1016/j.bbrc.2017.01.113
  • Lee, D., Yang, H., Kim, J., Brady, S., Zdraljevic, S., Zamanian, M., … Lee, J. (2017). The genetic basis of natural variation in a phoretic behavior. Nature Communications, 8(1), 273. doi:10.1038/s41467-017-00386-x
  • Lee, H., Choi, M.K., Lee, D., Kim, H.S., Hwang, H., Kim, H., … Lee, J. (2011). Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nature Neuroscience, 15(1), 107–112. doi:10.1038/nn.2975
  • Lee, J.S., Shih, P.Y., Schaedel, O.N., Quintero-Cadena, P., Rogers, A.K., & Sternberg, P.W. (2017). FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proceedings of the National Academy of Sciences of the United States of America, 114(50), E10726–E10735. doi:10.1073/pnas.1710374114
  • Li, W., Kennedy, S.G., & Ruvkun, G. (2003). daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes & Development, 17(7), 844–858. doi:10.1101/gad.1066503
  • Lin, K., Hsin, H., Libina, N., & Kenyon, C. (2001). Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genetics, 28(2), 139–145. doi:10.1038/88850
  • Lindberg, I., Tu, B., Muller, L., & Dickerson, I.M. (1998). Cloning and functional analysis of C. elegans 7B2. DNA and Cell Biology, 17(8), 727–734. doi:10.1089/dna.1998.17.727
  • Lopez, L.C.S., Rodrigues, P.J.F.P., & Rios, R.I. (1999). Frogs and snakes as phoretic dispersal agents of bromeliad ostracods (Limnocytheridae: Elpidium) and annelids (Naididae: Dero). Biotropica, 31(4), 705–708. doi:10.1111/j.1744-7429.1999.tb00421.x
  • Lucanic, M., Kiley, M., Ashcroft, N., L'Etoile, N., & Cheng, H.J. (2006). The Caenorhabditis elegans P21-activated kinases are differentially required for UNC-6/netrin-mediated commissural motor axon guidance. Development (Cambridge, England), 133(22), 4549–4559. doi:10.1242/dev.02648
  • Morris, R., Wilson, L., Sturrock, M., Warnock, N.D., Carrizo, D., Cox, D., … Dalzell, J.J. (2017). A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae. PLoS Pathogens, 13(3), e1006185. doi:10.1371/journal.ppat.1006185
  • Osche, G. (1954). Über verhalten und morphologie der dauerlarven freilebender nematoden. Zoologischer Anzeiger, 152, 65–73.
  • Paradis, S., & Ruvkun, G. (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes & Development, 12(16), 2488–2498. doi:10.1101/gad.12.16.2488
  • Park, D., Estevez, A., & Riddle, D.L. (2010). Antagonistic Smad transcription factors control the dauer/non-dauer switch in C. elegans. Development (Cambridge, England), 137(3), 477–485. doi:10.1242/dev.043752
  • Park, S., Hwang, H., Nam, S.W., Martinez, F., Austin, R.H., & Ryu, W.S. (2008). Enhanced Caenorhabditis elegans locomotion in a structured microfluidic environment. PloS One, 3(6), e2550. doi:10.1371/journal.pone.0002550
  • Patterson, G.I., & Padgett, R.W. (2000). TGFβ-related pathways: Roles in Caenorhabditis elegans development. Trends in Genetics, 16(1), 27–33. doi:10.1016/S0168-9525(99)01916-2
  • Patterson, G.I., Koweek, A., Wong, A., Liu, Y., & Ruvkun, G. (1997). The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes & Development, 11(20), 2679–2690. doi:10.1101/gad.11.20.2679
  • Penkov, S., Ogawa, A., Schmidt, U., Tate, D., Zagoriy, V., Boland, S., … Kurzchalia, T.V. (2014). A wax ester promotes collective host finding in the nematode Pristionchus pacificus. Nature Chemical Biology, 10(4), 281–285. doi:10.1038/nchembio.1460
  • Pierce, S.B., Costa, M., Wisotzkey, R., Devadhar, S., Homburger, S.A., Buchman, A.R., … Ruvkun, G. (2001). Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes & Development, 15(6), 672–686. doi:10.1101/gad.867301
  • Proctor, H., & Owens, I.I. (2000). Mites and birds: Diversity, parasitism and coevolution. Trends in Ecology & Evolution, 15(9), 358–364. doi:10.1016/S0169-5347(00)01924-8
  • Reed, E.M., & Wallace, H.R. (1965). Leaping locomotion by an insect-parasitic nematode. Nature, 206(4980), 210–210. doi:10.1038/206210a0
  • Ren, P., Lim, C.S., Johnsen, R., Albert, P.S., Pilgrim, D., & Riddle, D.L. (1996). Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science (New York, N.Y.), 274(5291), 1389–1391. doi:10.1126/science.274.5291.1389
  • Richaud, A., Zhang, G., Lee, D., Lee, J., & Felix, M.A. (2018). The local coexistence pattern of selfing genotypes in Caenorhabditis elegans natural metapopulations. Genetics, 208(2), 807–821. doi:10.1534/genetics.117.300564
  • Saul-Gershenz, L.S., & Millar, J.G. (2006). Phoretic nest parasites use sexual deception to obtain transport to their host’s nest. Proceedings of the National Academy of Sciences of the United States of America, 103(38), 14039–14044. doi:10.1073/pnas.0603901103
  • Schroeder, N.E., Androwski, R.J., Rashid, A., Lee, H., Lee, J., & Barr, M.M. (2013). Dauer-specific dendrite arborization in C. elegans is regulated by KPC-1/Furin. Current Biology : CB, 23(16), 1527–1535. doi:10.1016/j.cub.2013.06.058
  • Shaham, S., & Bargmann, C.I. (2002). Control of neuronal subtype identity by the C. elegans ARID protein CFI-1. Genes & Development, 16(8), 972–983. doi:10.1101/gad.976002
  • Shi, Y., & Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113(6), 685–700. doi:10.1016/S0092-8674(03)00432-X
  • Smith, E.S., Martinez-Velazquez, L., & Ringstad, N. (2013). A chemoreceptor that detects molecular carbon dioxide. The Journal of Biological Chemistry, 288(52), 37071–37081. doi:10.1074/jbc.M113.517367
  • Staniland, L. (1957). The swarming of Rhabditid eelworms in mushroom houses. Plant Pathology, 6(2), 61–62. doi:10.1111/j.1365-3059.1957.tb00775.x
  • Sudhaus, W. (2011). Phylogenetic systematisation and catalogue of paraphyletic “Rhabditidae” (Secernentea, Nematoda). Journal of Nematode Morphology and Systematics, 14(2), 113–178.
  • Thomas, J.H., Birnby, D.A., & Vowels, J.J. (1993). Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. Genetics, 134(4), 1105–1117.
  • Vowels, J.J., & Thomas, J.H. (1992). Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics, 130(1), 105–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.