1,110
Views
5
CrossRef citations to date
0
Altmetric
Section 2: Nervous system development

What about the males? the C. elegans sexually dimorphic nervous system and a CRISPR-based tool to study males in a hermaphroditic species

ORCID Icon, & ORCID Icon
Pages 323-334 | Received 21 Feb 2020, Accepted 26 Jun 2020, Published online: 10 Jul 2020

References

  • Akella, J.S., Carter, S.P., Nguyen, K., Tsiropoulou, S., Moran, A.L., Silva, M., … Blacque, O.E. (2020). Ciliary Rab28 and the BBSome negatively regulate extracellular vesicle shedding. eLife, 9:e50580 doi:10.7554/eLife.50580
  • Akella, J.S., Silva, M., Morsci, N.S., Nguyen, K.C., Rice, W.J., Hall, D.H., & Barr, M.M. (2019). Cell type-specific structural plasticity of the ciliary transition zone in C. elegans. Biology of the Cell, 111, 95–107. doi:10.1111/boc.201800042
  • Barr, M.M., DeModena, J., Braun, D., Nguyen, C.Q., Hall, D.H., & Sternberg, P.W. (2001). The Caenorhabditis elegans autosomal dominant polycystic kidney disease gene homologs lov-1 and pkd-2 act in the same pathway. Current Biology, 11, 1341–1346. doi:10.1016/S0960-9822(01)00423-7
  • Barr, M.M. and Garcia, L.R. Male mating behavior (June 19, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.78.1, http://www.wormbook.org.
  • Barr, M.M., García, L.R., & Portman, D.S. (2018). Sexual dimorphism and sex differences in Caenorhabditis elegans neuronal development and behavior. Genetics, 208, 909–935. doi:10.1534/genetics.117.300294
  • Barr, M.M., & Sternberg, P.W. (1999). A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature, 401, 386–389. doi:10.1038/43916
  • Barrios, A., Nurrish, S., & Emmons, S.W. (2008). Sensory regulation of C. elegans male mate-searching behavior. Current Biology, 18(23), 1865–1871. doi:10.1016/j.cub.2008.10.050
  • Barton, M.K., Schedl, T.B., & Kimble, J. (1987). Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics, 115(1), 107–119.
  • Bayer, E.A., & Hobert, O. (2018). Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling. Nature, 561, 117–121. doi:10.1038/s41586-018-0452-0
  • Beer, K.B., & Wehman, A.M. (2017). Mechanisms and functions of extracellular vesicle release in vivo—What we can learn from flies and worms. Cell Adhesion & Migration, 11, 135–150. doi:10.1080/19336918.2016.1236899
  • Berkseth, M., Ikegami, K., Arur, S., Lieb, J.D., & Zarkower, D. (2013). TRA-1 ChIP-seq reveals regulators of sexual differentiation and multilevel feedback in nematode sex determination. Proceedings of the National Academy of Sciences of the United States of America, 110, 16033–16038. doi:10.1073/pnas.1312087110
  • Boucher, C., & Sandford, R. (2004). Autosomal dominant polycystic kidney disease (ADPKD, MIM 173900, PKD1 and PKD2 genes, protein products known as polycystin-1 and polycystin-2). European Journal of Human Genetics, 12, 347–354. doi:10.1038/sj.ejhg.5201162
  • Boulter, C., Mulroy, S., Webb, S., Fleming, S., Brindle, K., & Sandford, R. (2001). Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proceedings of the National Academy of Sciences of the United States of America, 98, 12174–12179. doi:10.1073/pnas.211191098
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
  • Chasnov, J.R. (2013). The evolutionary role of males in C. elegans. Worm, 2(1), e21146. doi:10.4161/worm.21146
  • Chasnov, J.R., So, W.K., Chan, C.M., & Chow, K.L. (2007). The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proceedings of the National Academy of Sciences of the United States of America, 104, 6730–6735. doi:10.1073/pnas.0608050104
  • Chatterjee, I., Ibanez-Ventoso, C., Vijay, P., Singaravelu, G., Baldi, C., Bair, J., … Singson, A. (2013). Dramatic fertility decline in aging C. elegans males is associated with mating execution deficits rather than diminished sperm quality. Experimental Gerontology, 48, 1156–1166. doi:10.1016/j.exger.2013.07.014
  • Cicero, A.L., Lo Cicero, A., Stahl, P.D., & Raposo, G. (2015). Extracellular vesicles shuffling intercellular messages: For good or for bad. Current Opinion in Cell Biology, 35, 69–77. doi:10.1016/j.ceb.2015.04.013
  • Cook, S.J., Jarrell, T.A., Brittin, C.A., Wang, Y., Bloniarz, A.E., Yakovlev, M.A., … Emmons, S.W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 571, 63–71. doi:10.1038/s41586-019-1352-7
  • Cutter, A.D., Morran, L.T., & Phillips, P.C. (2019). Males, outcrossing, and sexual selection in Caenorhabditis nematodes. Genetics, 213(1), 27–57. doi:10.1534/genetics.119.300244
  • Dokshin, G.A., Ghanta, K.S., Piscopo, K.M., & Mello, C.C. (2018). Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in Caenorhabditis elegans. Genetics, 210, 781–787. doi:10.1534/genetics.118.301532
  • Doroquez, D.B., Berciu, C., Anderson, J.R., Sengupta, P., & Nicastro, D. (2014). A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife, 3, e01948. doi:10.7554/eLife.01948
  • EL Andaloussi, S., Mäger, I., Breakefield, X.O., & Wood, M.J.A. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews. Drug Discovery, 12, 347–357. doi:10.1038/nrd3978
  • Emmons, S.W. (2018). Neural circuits of sexual behavior in Caenorhabditis elegans. Annual Review of Neuroscience, 41, 349–369. doi:10.1146/annurev-neuro-070815-014056
  • Fatt, H.V., & Dougherty, E.C. (1963). Genetic control of differential heat tolerance in two strains of the nematode Caenorhabditis elegans. Science (New York, N.Y.), 141, 266–267. doi:10.1126/science.141.3577.266
  • Gruninger, T.R., Gualberto, D.G., LeBoeuf, B., & Garcia, L.R. (2006). Integration of male mating and feeding behaviors in Caenorhabditis elegans. Journal of Neuroscience, 26(1), 169–179. doi:10.1523/JNEUROSCI.3364-05.2006
  • Guo, X., Navetta, A., Gualberto, D.G., & García, L.R. (2012). Behavioral decay in aging male C. elegans correlates with increased cell excitability. Neurobiology of Aging, 33, 1483.e5–e23. doi:10.1016/j.neurobiolaging.2011.12.016
  • Hanaoka, K., Qian, F., Boletta, A., Bhunia, A.K., Piontek, K., Tsiokas, L., … Germino, G.G. (2000). Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature, 408, 990–994. doi:10.1038/35050128
  • Hart, M.P., & Hobert, O. (2018). Neurexin controls plasticity of a mature, sexually dimorphic neuron. Nature, 553, 165–170. doi:10.1038/nature25192
  • Hobert O. Neurogenesis in the nematode Caenorhabditis elegans (October 4, 2010), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.12.2, http://www.wormbook.org.
  • Hobert, O., & Kratsios, P. (2019). Neuronal identity control by terminal selectors in worms, flies, and chordates. Current Opinion in Neurobiology, 56, 97–105. doi:10.1016/j.conb.2018.12.006
  • Hodgkin, J. (1983). Male phenotypes and mating efficiency in Caenorhabditis elegans. Genetics, 103(1), 43–64.
  • Hodgkin, J. (1987a). Primary sex determination in the nematode C. elegans. Development, 101(Suppl) 5–16.
  • Hodgkin, J. (1987b). Sex determination and dosage compensation in Caenorhabditis elegans. Annual Review of Genetics, 21(1), 133–154. doi:10.1146/annurev.ge.21.120187.001025
  • Hodgkin, J., Horvitz, H.R., & Brenner, S. (1979). Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics, 91(1), 67–94.
  • Hodgkin, J.A., & Brenner, S. (1977). Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics, 86(2 Pt. 1), 275–287.
  • Hogan, M.C., Bakeberg, J.L., Gainullin, V.G., Irazabal, M.V., Harmon, A.J., Lieske, J.C., … Ward, C.J. (2015). Identification of biomarkers for PKD1 using urinary exosomes. Journal of the American Society of Nephrology, 26, 1661–1670. doi:10.1681/ASN.2014040354
  • Igarashi, P., & Somlo, S. (2002). Genetics and pathogenesis of polycystic kidney disease. Journal of the American Society of Nephrology, 13(9), 2384–2398. doi:10.1097/01.asn.0000028643.17901.42
  • Jarrell, T.A., Wang, Y., Bloniarz, A.E., Brittin, C.A., Xu, M., Thomson, J.N., … Emmons, S.W. (2012). The connectome of a decision-making neural network. Science (New York, N.Y.), 337, 437–444. doi:10.1126/science.1221762
  • Johnson, J.R., Edwards, M.R., Davies, H., Newman, D., Holden, W., Jenkins, R.E., … Barclay, J.W. (2017). Ethanol stimulates locomotion via a G-signaling pathway in IL2 neurons in. Genetics, 207, 1023–1039. doi:10.1534/genetics.117.300119
  • Kaplan, O.I., Doroquez, D.B., Cevik, S., Bowie, R.V., Clarke, L., Anna, A.W., … Blacque, O.E. (2012). Endocytosis genes facilitate protein and membrane transport in C. elegans sensory cilia. Current Biology, 22, 451–460. doi:10.1016/j.cub.2012.01.060
  • Karpman, D., Ståhl, A.-L., & Arvidsson, I. (2017). Extracellular vesicles in renal disease. Nature Reviews. Nephrology, 13, 545–562. doi:10.1038/nrneph.2017.98
  • Klosin, A., Casas, E., Hidalgo-Carcedo, C., Vavouri, T., & Lehner, B. (2017). Transgenerational transmission of environmental information in C. elegans. Science, 356, 320–323. doi:10.1126/science.aah6412
  • Kolotuev, I., Apaydin, A., & Labouesse, M. (2009). Secretion of Hedgehog-related peptides and WNT during Caenorhabditis elegans development. Traffic (Copenhagen, Denmark), 10, 803–810. doi:10.1111/j.1600-0854.2008.00871.x
  • LeBoeuf, B., & Rene Garcia, L. (2017). Caenorhabditis elegans male copulation circuitry incorporates sex-shared defecation components to promote intromission and sperm transfer. G3 (Bethesda, MD.), 7, 647–662. doi:10.1534/g3.116.036756
  • Lee, H., Choi, M.-K., Lee, D., Kim, H.-S., Hwang, H., Kim, H., … Lee, J. (2011). Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nature Neuroscience, 15(1), 107–112. doi:10.1038/nn.2975
  • Liégeois, S., Benedetto, A., Garnier, J.-M., Schwab, Y., & Labouesse, M. (2006). The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. The Journal of Cell Biology, 173, 949–961. doi:10.1083/jcb.200511072
  • Liu, K.S., & Sternberg, P.W. (1995). Sensory regulation of male mating behavior in Caenorhabditis elegans. Neuron, 14(1), 79–89. doi:10.1016/0896-6273(95)90242-2
  • Macaisne, N., Kessler, Z., & Yanowitz, J.L. (2018). Meiotic double-strand break proteins influence repair pathway utilization. Genetics, 210, 843–856. doi:10.1534/genetics.118.301402
  • Maguire, J.E., Silva, M., Nguyen, K.C.Q., Hellen, E., Kern, A.D., Hall, D.H., & Barr, M.M. (2015). Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis. Molecular Biology of the Cell, 26, 2823–2832. doi:10.1091/mbc.E15-01-0009
  • Mateo, A.-R.F., Kessler, Z., Jolliffe, A.K., McGovern, O., Yu, B., Nicolucci, A., … Derry, W.B. (2016). The p53-like protein CEP-1 is required for meiotic fidelity in C. elegans. Current Biology, 26, 1148–1158. doi:10.1016/j.cub.2016.03.036
  • Melentijevic, I., Toth, M.L., Arnold, M.L., Guasp, R.J., Harinath, G., Nguyen, K.C., … Driscoll, M. (2017). C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature, 542, 367–371. doi:10.1038/nature21362
  • Melnick, M., Gonzales, P., Cabral, J., Allen, M.A., Dowell, R.D., & Link, C.D. (2019). Heat shock in C. elegans induces downstream of gene transcription and accumulation of double-stranded RNA. PLoS One, 14(4), e0206715. doi:10.1371/journal.pone.0206715
  • Meneely, P.M., McGovern, O.L., Heinis, F.I., & Yanowitz, J.L. (2012). Crossover distribution and frequency are regulated by him-5 in Caenorhabditis elegans. Genetics, 190, 1251–1266. doi:10.1534/genetics.111.137463
  • Molina-García, L., Kim, B., Cook, S.J., Bonnington, R., O’Shea, J., Sammut, M., … Poole, R.J. (2019). A direct glia-to-neuron natural transdifferentiation ensures nimble sensory-motor coordination of male mating behaviour. bioRxiv. 285320. doi:10.1101/285320
  • Nauli, S.M., Alenghat, F.J., Luo, Y., Williams, E., Vassilev, P., Li, X., … Zhou, J. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genetics, 33(2), 129–137. doi:10.1038/ng1076
  • Nigon, V., & Dougherty, E.C. (1949). Reproductive patterns and attempts at reciprocal crossing of Rhabditis elegans maupas, 1900, and Rhabditis briggsae Dougherty and nigon, 1949 (Nematoda: Rhabditidae). The Journal of Experimental Zoology, 112, 485–503. doi:10.1002/jez.1401120307
  • O’Hagan, R., Silva, M., Nguyen, K.C.Q., Zhang, W., Bellotti, S., Ramadan, Y.H., … Barr, M.M. (2017). Glutamylation regulates transport, specializes function, and sculpts the structure of cilia. Current Biology, 27, 3430–3441.e6. doi:10.1016/j.cub.2017.09.066
  • Oren-Suissa, M., Bayer, E.A., & Hobert, O. (2016). Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature, 533, 206–211. doi:10.1038/nature17977
  • Oren-Suissa, M., Gattegno, T., Kravtsov, V., & Podbilewicz, B. (2017). Extrinsic repair of injured dendrites as a paradigm for regeneration by fusion in Caenorhabditis elegans. Genetics, 206(1), 215–230. doi:10.1534/genetics.116.196386
  • Paix, A., Wang, Y., Smith, H.E., Lee, C.-Y.S., Calidas, D., Lu, T., … Seydoux, G. (2014). Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans. Genetics, 198, 1347–1356. doi:10.1534/genetics.114.170423
  • Pereira, L., Kratsios, P., Serrano-Saiz, E., Sheftel, H., Mayo, A.E., Hall, D.H., … Hobert, O. (2015). A cellular and regulatory map of the cholinergic nervous system of C. elegans. eLife, 4, 4. doi:10.7554/eLife.12432
  • Perkins, L.A., Hedgecock, E.M., Thomson, J.N., & Culotti, J.G. (1986). Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental Biology, 117, 456–487. doi:10.1016/0012-1606(86)90314-3
  • Portman, D.S. (2017). Sexual modulation of sex-shared neurons and circuits in Caenorhabditis elegans. Journal of Neuroscience Research, 95(1–2), 527–538. doi:10.1002/jnr.23912
  • Ryan, D.A., Miller, R.M., Lee, K., Neal, S.J., Fagan, K.A., Sengupta, P., & Portman, D.S. (2014). Sex, age, and hunger regulate behavioral prioritization through dynamic modulation of chemoreceptor expression. Current Biology, 24, 2509–2517. doi:10.1016/j.cub.2014.09.032
  • Sakai, N., Iwata, R., Yokoi, S., Butcher, R.A., Clardy, J., Tomioka, M., & Iino, Y. (2013). A Sexually conditioned switch of chemosensory behavior in C. elegans. PLos One, 8, e68676. doi:10.1371/journal.pone.0068676
  • Sammut, M., Cook, S.J., Nguyen, K.C.Q., Felton, T., Hall, D.H., Emmons, S.W., … Barrios, A. (2015). Glia-derived neurons are required for sex-specific learning in C. elegans. Nature, 526, 385–390. doi:10.1038/nature15700
  • Schedl, T., Graham, P.L., Barton, M.K., & Kimble, J. (1989). Analysis of the role of tra-1 in germline sex determination in the nematode Caenorhabditis elegans. Genetics, 123, 755–769.
  • Serrano-Saiz, E., Pereira, L., Gendrel, M., Aghayeva, U., Bhattacharya, A., Howell, K., … Hobert, O. (2017). A neurotransmitter atlas of the Caenorhabditis elegans male nervous system reveals sexually dimorphic neurotransmitter usage. Genetics, 206, 1251–1269. doi:10.1534/genetics.117.202127
  • Sharif-Naeini, R., Folgering, J.H.A., Bichet, D., Duprat, F., Lauritzen, I., Arhatte, M., … Honoré, E. (2009). Polycystin-1 and -2 dosage regulates pressure sensing. Cell, 139, 587–596. doi:10.1016/j.cell.2009.08.045
  • Silva, M., Morsci, N., Nguyen, K.C.Q., Rizvi, A., Rongo, C., Hall, D.H., & Barr, M.M. (2017). Cell-specific α-tubulin isotype regulates ciliary microtubule ultrastructure, intraflagellar transport, and extracellular vesicle biology. Current Biology, 27, 968–980. doi:10.1016/j.cub.2017.02.039
  • Stahl, P.D., & Raposo, G. (2019). Extracellular vesicles: Exosomes and microvesicles, integrators of homeostasis. Physiology (Bethesda, MD.), 34, 169–177. doi:10.1152/physiol.00045.2018
  • Sulston, J.E., Albertson, D.G., & Thomson, J.N. (1980). The Caenorhabditis elegans male: Postembryonic development of nongonadal structures. Developmental Biology, 78, 542–576. doi:10.1016/0012-1606(80)90352-8
  • Sulston, J.E., & Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56(1), 110–156. doi:10.1016/0012-1606(77)90158-0
  • Sulston, J.E., & Horvitz, H.R. (1981). Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. Developmental Biology, 82(1), 41–55. doi:10.1016/0012-1606(81)90427-9
  • Sulston, J.E., Schierenberg, E., White, J.G., & Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100(1), 64–119. doi:10.1016/0012-1606(83)90201-4
  • Sulston, J.E., & White, J.G. (1980). Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. Developmental Biology, 78, 577–597. doi:10.1016/0012-1606(80)90353-X
  • Timmons, L., Luna, H., Martinez, J., Moore, Z., Nagarajan, V., Kemege, J.M., & Asad, N. (2014). Systematic comparison of bacterial feeding strains for increased yield of Caenorhabditis elegans males by RNA interference-induced non-disjunction. FEBS Letters, 588, 3347–3351. doi:10.1016/j.febslet.2014.07.023
  • Wang, J., Kaletsky, R., Silva, M., Williams, A., Haas, L.A., Androwski, R.J., … Barr, M.M. (2015). Cell-specific transcriptional profiling of ciliated sensory neurons reveals regulators of behavior and extracellular vesicle biogenesis. Current Biology, 25, 3232–3238. doi:10.1016/j.cub.2015.10.057
  • Wang, J., Nikonorova, I.A., Gu, A., Sternberg, P.W., & Barr, M.M. (2020). Polycystin-2 ciliary extracellular vesicle release and targeting. Current Biology, 30, R1–R3.
  • Wang, J., Silva, M., Haas, L.A., Morsci, N.S., Nguyen, K.C.Q., Hall, D.H., & Barr, M.M. (2014). C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Current Biology, 24, 519–525. doi:10.1016/j.cub.2014.01.002
  • Ward, S., Thomson, N., White, J. G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. The Journal of Comparative Neurology, 160(3), 313–337. DOI: 10.1002/cne.901600305
  • Ware, R. W., Clark, D., Crossland, K., & Russell, R. L. (1975). The nerve ring of the nematodeCaenorhabditis elegans: Sensory input and motor output. In The Journal of Comparative Neurology (Vol. 162, Issue 1, pp. 71–110). https://doi.org/10.1002/cne.901620106
  • Wehman, A.M., Poggioli, C., Schweinsberg, P., Grant, B.D., & Nance, J. (2011). The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Current Biology, 21, 1951–1959. doi:10.1016/j.cub.2011.10.040
  • Weinberg, P., Berkseth, M., Zarkower, D., & Hobert, O. (2018). Sexually dimorphic unc-6/netrin expression controls sex-specific maintenance of synaptic connectivity. Current Biology, 28, 623–629.e3. doi:10.1016/j.cub.2018.01.002
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314, 1–340. doi:10.1098/rstb.1986.0056
  • Wu, G., Markowitz, G.S., Li, L., D'Agati, V.D., Factor, S.M., Geng, L., … Somlo, S. (2000). Cardiac defects and renal failure in mice with targeted mutations in Pkd2. Nature Genetics, 24(1), 75–78. doi:10.1038/71724
  • Yoder, B.K., Hou, X., & Guay-Woodford, L.M. (2002). The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. Journal of the American Society of Nephrology, 13, 2508–2516. doi:10.1097/01.ASN.0000029587.47950.25
  • Zarkower, D., & Hodgkin, J. (1992). Molecular analysis of the C. elegans sex-determining gene tra-1: A gene encoding two zinc finger proteins. Cell, 70, 237–249. doi:10.1016/0092-8674(92)90099-X
  • Zaslaver, A., Liani, I., Shtangel, O., Ginzburg, S., Yee, L., & Sternberg, P.W. (2015). Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 112, 1185–1189. doi:10.1073/pnas.1423656112
  • Zhao, Y., Wang, H., Poole, R.J., & Gems, D. (2019). A fln-2 mutation affects lethal pathology and lifespan in C. elegans. Nature Communications, 10(1), 5087. doi:10.1038/s41467-019-13062-z
  • Zhou, L., He, B., Deng, J., Pang, S., & Tang, H. (2019). Histone acetylation promotes long-lasting defense responses and longevity following early life heat stress. PLoS Genetics, 15, e1008122. doi:10.1371/journal.pgen.1008122

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.