5,130
Views
37
CrossRef citations to date
0
Altmetric
Section 6: Survival, aging and disease

Host-microbe interactions and the behavior of Caenorhabditis elegans

&
Pages 500-509 | Received 10 Apr 2020, Accepted 07 Jul 2020, Published online: 12 Aug 2020

References

  • Avery, L., & Horvitz, H.R. (1990). Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. The Journal of Experimental Zoology, 253(3), 263–270. doi:10.1002/jez.1402530305
  • Bargmann, C.I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science (New York, N.Y.), 282(5396), 2028–2033. doi:10.1126/science.282.5396.2028
  • Bargmann, C.I., Hartwieg, E., & Horvitz, H.R. (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell, 74(3), 515–527. doi:10.1016/0092-8674(93)80053-H
  • Bargmann, C.I., & Horvitz, H.R. (1991). Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron, 7(5), 729–742. doi:10.1016/0896-6273(91)90276-6
  • Barrios, A., Ghosh, R., Fang, C., Emmons, S.W., & Barr, M.M. (2012). PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nature Neuroscience, 15(12), 1675–1682. doi:10.1038/nn.3253
  • Beale, E., Li, G., Tan, M.-W., & Rumbaugh, K.P. (2006). Caenorhabditis elegans senses bacterial autoinducers. Applied and Environmental Microbiology, 72(7), 5135–5137. doi:10.1128/AEM.00611-06
  • Ben Arous, J., Laffont, S., & Chatenay, D. (2009). Molecular and sensory basis of a food related two-state behavior in C. elegans. PLoS One., 4(10), e7584. doi:10.1371/journal.pone.0007584
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
  • Bretscher, A.J., Busch, K.E., & de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 105 (23), 8044–8049. doi:10.1073/pnas.0707607105
  • Bretscher, A.J., Kodama-Namba, E., Busch, K.E., Murphy, R.J., Soltesz, Z., Laurent, P., & de Bono, M. (2011). Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron, 69(6), 1099–1113. doi:10.1016/j.neuron.2011.02.023
  • Cermak, N., Yu, S.K., Clark, R., Huang, Y.-C., Baskoylu, S.N., & Flavell, S.W. (2020). Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans. eLife, 9. doi:10.7554/eLife.57093
  • Chang, A.J., Chronis, N., Karow, D.S., Marletta, M.A., & Bargmann, C.I. (2006). A distributed chemosensory circuit for oxygen preference in C. elegans. PLoS Biology, 4(9), e274. doi:10.1371/journal.pbio.0040274
  • Chao, M.Y., Komatsu, H., Fukuto, H.S., Dionne, H.M., & Hart, A.C. (2004). Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15512–15517. doi:10.1073/pnas.0403369101
  • Chen, Z., Hendricks, M., Cornils, A., Maier, W., Alcedo, J., & Zhang, Y. (2013). Two insulin-like peptides antagonistically regulate aversive olfactory learning in C. elegans. Neuron, 77(3), 572–585. doi:10.1016/j.neuron.2012.11.025
  • Cheung, B.H.H., Cohen, M., Rogers, C., Albayram, O., & de Bono, M. (2005). Experience-dependent modulation of C. elegans behavior by ambient oxygen. Current Biology: CB, 15(10), 905–917. doi:10.1016/j.cub.2005.04.017
  • Couillault, C., & Ewbank, J.J. (2002). Diverse bacteria are pathogens of Caenorhabditis elegans. Infection and Immunity, 70(8), 4705–4707. doi:10.1128/iai.70.8.4705-4707.2002
  • Darby, C., Cosma, C.L., Thomas, J.H., & Manoil, C. (1999). Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(26), 15202–15207. doi:10.1073/pnas.96.26.15202
  • de Bono, M., & Bargmann, C.I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell, 94(5), 679–689. doi:10.1016/S0092-8674(00)81609-8
  • Dirksen, P., Marsh, S.A., Braker, I., Heitland, N., Wagner, S., Nakad, R., … Rosenstiel, P. (2016). The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biology, 14, 38. doi:10.1186/s12915-016-0258-1
  • Dunbar, T.L., Yan, Z., Balla, K.M., Smelkinson, M.G., & Troemel, E.R. (2012). C. elegans detects pathogen-induced translational inhibition to activate immune signaling. Cell Host Microbe, 11(4), 375–386. doi:10.1016/j.chom.2012.02.008
  • Flavell, S.W., Pokala, N., Macosko, E.Z., Albrecht, D.R., Larsch, J., & Bargmann, C.I. (2013). Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell, 154(5), 1023–1035. doi:10.1016/j.cell.2013.08.001
  • Fletcher, M., Tillman, E.J., Butty, V.L., Levine, S.S., & Kim, D.H. (2019). Global transcriptional regulation of innate immunity by ATF-7 in C. elegans. PLoS Genetics, 15(2), e1007830. doi:10.1371/journal.pgen.1007830
  • Fujiwara, M., Sengupta, P., & McIntire, S.L. (2002). Regulation of body size and behavioral state of C. elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron, 36(6), 1091–1102. doi:10.1016/S0896-6273(02)01093-0
  • Garigan, D., Hsu, A.-L., Fraser, A.G., Kamath, R.S., Ahringer, J., & Kenyon, C. (2002). Genetic analysis of tissue aging in Caenorhabditis elegans: A role for heat-shock factor and bacterial proliferation. Genetics, 161(3), 1101–1112.
  • Garsin, D.A., Sifri, C.D., Mylonakis, E., Qin, X., Singh, K.V., Murray, B.E., … Ausubel, F.M. (2001). A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10892–10897. doi:10.1073/pnas.191378698
  • Glater, E.E., Rockman, M.V., & Bargmann, C.I. (2014). Multigenic natural variation underlies Caenorhabditis elegans olfactory preference for the bacterial pathogen Serratia marcescens. G3 (Bethesda, Md.), 4(2), 265–276. doi:10.1534/g3.113.008649
  • Golden, J.W., & Riddle, D.L. (1984). The Caenorhabditis elegans dauer larva: Developmental effects of pheromone, food, and temperature. Developmental Biology, 102(2), 368–378. doi:10.1016/0012-1606(84)90201-X
  • Gray, J.M., Hill, J.J., & Bargmann, C.I. (2005). A circuit for navigation in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3184–3191. doi:10.1073/pnas.0409009101
  • Gray, J.M., Karow, D.S., Lu, H., Chang, A.J., Chang, J.S., Ellis, R.E., … Bargmann, C.I. (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature, 430(6997), 317–322. doi:10.1038/nature02714
  • Ha, H., Hendricks, M., Shen, Y., Gabel, C.V., Fang-Yen, C., Qin, Y., … Zhang, Y. (2010). Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron, 68(6), 1173–1186. doi:10.1016/j.neuron.2010.11.025
  • Hallem, E.A., & Sternberg, P.W. (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 105(23), 8038–8043. doi:10.1073/pnas.0707469105
  • Han, S., Schroeder, E.A., Silva-García, C.G., Hebestreit, K., Mair, W.B., & Brunet, A. (2017). Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature, 544(7649), 185–190. doi:10.1038/nature21686
  • Hao, Y., Yang, W., Ren, J., Hall, Q., Zhang, Y., & Kaplan, J.M. (2018). Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. eLife, 7. doi:10.7554/eLife.36833
  • Hedgecock, E.M., & Russell, R.L. (1975). Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 72(10), 4061–4065. doi:10.1073/pnas.72.10.4061
  • Herndon, L.A., Schmeissner, P.J., Dudaronek, J.M., Brown, P.A., Listner, K.M., Sakano, Y., … Driscoll, M. (2002). Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature, 419(6909), 808–814. doi:10.1038/nature01135
  • Hilbert, Z.A., & Kim, D.H. (2017). Sexually dimorphic control of gene expression in sensory neurons regulates decision-making behavior in C. elegans. eLife, 6. doi:10.7554/eLife.21166
  • Hilbert, Z.A., & Kim, D.H. (2018). PDF-1 neuropeptide signaling regulates sexually dimorphic gene expression in shared sensory neurons of C. elegans. eLife, 7. doi:10.7554/eLife.36547
  • Hills, T., Brockie, P.J., & Maricq, A.V. (2004). Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. The Journal of Neuroscience : The Official journal of the Society for Neuroscience, 24(5), 1217–1225. doi:10.1523/JNEUROSCI.1569-03.2004
  • Hodgkin, J., Kuwabara, P.E., & Corneliussen, B. (2000). A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Current Biology: CB, 10(24), 1615–1618. doi:10.1016/S0960-9822(00)00867-8
  • Huffman, D.L., Abrami, L., Sasik, R., Corbeil, J., van der Goot, F.G., & Aroian, R.V. (2004). Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proceedings of the National Academy of Sciences of the United States of America, 101(30), 10995–11000. doi:10.1073/pnas.0404073101
  • Hyun, M., Davis, K., Lee, I., Kim, J., Dumur, C., & You, Y.-J. (2016). Fat metabolism regulates satiety behavior in C. elegans. Scientific Reports, 6, 24841. doi:10.1038/srep24841
  • Irazoqui, J.E., Troemel, E.R., Feinbaum, R.L., Luhachack, L.G., Cezairliyan, B.O., & Ausubel, F.M. (2010). Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathogens, 6, e1000982. doi:10.1371/journal.ppat.1000982
  • Jin, X., Pokala, N., & Bargmann, C.I. (2016). Distinct circuits for the formation and retrieval of an imprinted olfactory memory. Cell, 164(4), 632–643. doi:10.1016/j.cell.2016.01.007
  • Juozaityte, V., Pladevall-Morera, D., Podolska, A., Nørgaard, S., Neumann, B., & Pocock, R. (2017). The ETS-5 transcription factor regulates activity states in Caenorhabditis elegans by controlling satiety. Proceedings of the National Academy of Sciences of the United States of America, 114(9), E1651–E1658. doi:10.1073/pnas.1610673114
  • Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., … Sohrmann, M. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421(6920), 231–237. doi:10.1038/nature01278
  • Kang, L., Gao, J., Schafer, W.R., Xie, Z., & Xu, X.Z.S. (2010). C. elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron, 67(3), 381–391. doi:10.1016/j.neuron.2010.06.032
  • Kaul, T.K., Rodrigues, P.R., Ogungbe, I.V., Kapahi, P., and Gill, M.S. (2014). Bacterial Fatty Acids Enhance Recovery from the Dauer Larva in Caenorhabditis elegans. Plos One 9(1): e86979.
  • Kim, D.H., & Ewbank, J.J. (2018). Signaling in the innate immune response. WormBook : The Online Review of C. elegans Biology, 2018, 1–35. doi:10.1895/wormbook.1.83.2
  • Kim, D.H., Feinbaum, R., Alloing, G., Emerson, F.E., Garsin, D.A., Inoue, H., … Tan, M.-W. (2002). A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science (New York, N.Y.), 297(5581), 623–626. doi:10.1126/science.1073759
  • Kirienko, N.V., Kirienko, D.R., Larkins-Ford, J., Wählby, C., Ruvkun, G., & Ausubel, F.M. (2013). Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host & Microbe, 13(4), 406–416. doi:10.1016/j.chom.2013.03.003
  • Kumar, S., Egan, B.M., Kocsisova, Z., Schneider, D.L., Murphy, J.T., Diwan, A., & Kornfeld, K. (2019). Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Developmental Cell, 49(1), 100–117.e6. doi:10.1016/j.devcel.2019.03.010
  • Lee, K., & Mylonakis, E. (2017). An intestine-derived neuropeptide controls avoidance behavior in Caenorhabditis elegans. Cell Reports, 20(10), 2501–2512. doi:10.1016/j.celrep.2017.08.053
  • Lemieux, G.A., Cunningham, K.A., Lin, L., Mayer, F., Werb, Z., & Ashrafi, K. (2015). Kynurenic acid is a nutritional cue that enables behavioral plasticity. Cell, 160(1–2), 119–131. doi:10.1016/j.cell.2014.12.028
  • Lenaerts, I., Walker, G.A., Van Hoorebeke, L., Gems, D., & Vanfleteren, J.R. (2008). Dietary restriction of Caenorhabditis elegans by axenic culture reflects nutritional requirement for constituents provided by metabolically active microbes. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63(3), 242–252. doi:10.1093/gerona/63.3.242
  • Li, Q., & Liberles, S.D. (2015). Aversion and attraction through olfaction. Current Biology : CB, 25(3), R120–R129. doi:10.1016/j.cub.2014.11.044
  • Lipton, J., Kleemann, G., Ghosh, R., Lints, R., & Emmons, S.W. (2004). Mate searching in Caenorhabditis elegans: A genetic model for sex drive in a simple invertebrate. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(34), 7427–7434. doi:10.1523/JNEUROSCI.1746-04.2004
  • Liu, Y., Samuel, B.S., Breen, P.C., & Ruvkun, G. (2014). Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature, 508(7496), 406–410. doi:10.1038/nature13204
  • López-Cruz, A., Sordillo, A., Pokala, N., Liu, Q., McGrath, P.T., & Bargmann, C.I. (2019). Parallel multimodal circuits control an innate foraging behavior. Neuron, 102(2), 407–419.e8. doi:10.1016/j.neuron.2019.01.053
  • Macosko, E.Z., Pokala, N., Feinberg, E.H., Chalasani, S.H., Butcher, R.A., Clardy, J., & Bargmann, C.I. (2009). A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature, 458(7242), 1171–1175. doi:10.1038/nature07886
  • Mahajan-Miklos, S., Tan, M.W., Rahme, L.G., & Ausubel, F.M. (1999). Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell, 96(1), 47–56. doi:10.1016/S0092-8674(00)80958-7
  • Marroquin, L.D., Elyassnia, D., Griffitts, J.S., Feitelson, J.S., & Aroian, R.V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics, 155(4), 1693–1699.
  • McEwan, D.L., Kirienko, N.V., & Ausubel, F.M. (2012). Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans. Cell Host & Microbe, 11(4), 364–374. doi:10.1016/j.chom.2012.02.007
  • McGrath, P.T., Rockman, M.V., Zimmer, M., Jang, H., Macosko, E.Z., Kruglyak, L., & Bargmann, C.I. (2009). Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron, 61(5), 692–699. doi:10.1016/j.neuron.2009.02.012
  • McMullan, R., Anderson, A., & Nurrish, S. (2012). Behavioral and immune responses to infection require Gαq- RhoA signaling in C. elegans. PLoS Pathogens, 8(2), e1002530. doi:10.1371/journal.ppat.1002530
  • Meisel, J.D., Panda, O., Mahanti, P., Schroeder, F.C., & Kim, D.H. (2014). Chemosensation of bacterial secondary metabolites modulates neuroendocrine signaling and behavior of C. elegans. Cell, 159(2), 267–280. doi:10.1016/j.cell.2014.09.011
  • Melo, J.A., & Ruvkun, G. (2012). Inactivation of conserved C. elegans genes engages pathogen- and xenobiotic-associated defenses. Cell, 149(2), 452–466. doi:10.1016/j.cell.2012.02.050
  • Montalvo-Katz, S., Huang, H., Appel, M.D., Berg, M., & Shapira, M. (2013). Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infection and Immunity, 81(2), 514–520. doi:10.1128/IAI.00653-12
  • Moore, R.S., Kaletsky, R., & Murphy, C.T. (2019). Piwi/PRG-1 argonaute and TGF-β mediate transgenerational learned pathogenic avoidance. Cell, 177(7), 1827–1841.e12. doi:10.1016/j.cell.2019.05.024
  • Mori, I., & Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 376(6538), 344–348. doi:10.1038/376344a0
  • O’Donnell, M.P., Chao, P.-H., Kammenga, J.E., & Sengupta, P. (2018). Rictor/TORC2 mediates gut-to-brain signaling in the regulation of phenotypic plasticity in C. elegans. PLoS Genetics, 14(2), e1007213. doi:10.1371/journal.pgen.1007213
  • O’Donnell, M.P., Fox, B.W., Chao, P.-H., Schroeder, F.C., & Sengupta, P. (2020). A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature, 583(7816), 415–420. doi:10.1038/s414586-020-2395-5
  • Palamiuc, L., Noble, T., Witham, E., Ratanpal, H., Vaughan, M., & Srinivasan, S. (2017). A tachykinin-like neuroendocrine signalling axis couples central serotonin action and nutrient sensing with peripheral lipid metabolism. Nature Communications, 8, 14237. doi:10.1038/ncomms14237
  • Park, J., Meisel, J.D., & Kim, D.H. (2020). Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic-GMP-dependent pathways in C. elegans. PLoS Genetics 16(8): e1008505. doi:10.1371/journal.pgen.1008505.
  • Pellegrino, M.W., Nargund, A.M., Kirienko, N.V., Gillis, R., Fiorese, C.J., & Haynes, C.M. (2014). Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature, 516(7531), 414–417. doi:10.1038/nature13818
  • Persson, A., Gross, E., Laurent, P., Busch, K.E., Bretes, H., & de Bono, M. (2009). Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature, 458(7241), 1030–1033. doi:10.1038/nature07820
  • Pradel, E., Zhang, Y., Pujol, N., Matsuyama, T., Bargmann, C.I., & Ewbank, J.J. (2007). Detection and avoidance of a natural product from the pathogenic bacterium Serratia marcescens by Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2295–2300. doi:10.1073/pnas.0610281104
  • Pujol, N., Link, E.M., Liu, L.X., Kurz, C.L., Alloing, G., Tan, M.W., … Ewbank, J.J. (2001). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology: CB, 11(11), 809–821. doi:10.1016/S0960-9822(01)00241-X
  • Pukkila-Worley, R. (2016). Surveillance immunity: An emerging paradigm of innate defense activation in Caenorhabditis elegans. PLoS Pathogens, 12(9), e1005795. doi:10.1371/journal.ppat.1005795
  • Qi, B., & Han, M. (2018). Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase. Cell, 175(2), 571–582.e11. doi:10.1016/j.cell.2018.07.032
  • Qi, B., Kniazeva, M., & Han, M. (2017). A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal’s food behavior and growth. eLife, 6. doi:10.7554/eLife.26243
  • Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., & Ausubel, F.M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science (New York, N.Y.), 268(5219), 1899–1902. doi:10.1126/science.7604262
  • Rangan, K.J., Pedicord, V.A., Wang, Y.-C., Kim, B., Lu, Y., Shaham, S., … Hang, H.C. (2016). A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science (New York, N.Y.), 353(6306), 1434–1437. doi:10.1126/science.aaf3552
  • Reddy, K.C., Andersen, E.C., Kruglyak, L., & Kim, D.H. (2009). A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science (New York, N.Y.), 323(5912), 382–384. doi:10.1126/science.1166527
  • Reddy, K.C., Dunbar, T.L., Nargund, A.M., Haynes, C.M., & Troemel, E.R. (2016). The C. elegans CCAAT-enhancer-binding protein gamma is required for surveillance immunity. Cell Reports, 14(7), 1581–1589. doi:10.1016/j.celrep.2016.01.055
  • Reddy, K.C., Hunter, R.C., Bhatla, N., Newman, D.K., & Kim, D.H. (2011). Caenorhabditis elegans NPR-1-mediated behaviors are suppressed in the presence of mucoid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12887–12892. doi:10.1073/pnas.1108265108
  • Rhoades, J.L., Nelson, J.C., Nwabudike, I., Yu, S.K., McLachlan, I.G., Madan, G.K., … Flavell, S.W. (2019). ASICs mediate food responses in an enteric serotonergic neuron that controls foraging behaviors. Cell, 176(1–2), 85–97.e14. doi:10.1016/j.cell.2018.11.023
  • Richardson, C.E., Kooistra, T., & Kim, D.H. (2010). An essential role for XBP-1 in host protection against immune activation in C. elegans. Nature, 463(7284), 1092–1095. doi:10.1038/nature08762
  • Saiki, R., Lunceford, A.L., Bixler, T., Dang, P., Lee, W., Furukawa, S., … Clarke, C.F. (2008). Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q. Aging Cell, 7(3), 291–304. doi:10.1111/j.1474-9726.2008.00378.x
  • Samuel, B.S., Rowedder, H., Braendle, C., Félix, M.-A., & Ruvkun, G. (2016). Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences of the United States of America, 113(27), E3941–3949. doi:10.1073/pnas.1607183113
  • Sawin, E.R., Ranganathan, R., & Horvitz, H.R. (2000). C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron, 26(3), 619–631. doi:10.1016/S0896-6273(00)81199-X
  • Schulenburg, H., & Félix, M.-A. (2017). The natural biotic environment of Caenorhabditis elegans. Genetics, 206(1), 55–86. doi:10.1534/genetics.116.195511
  • Schulenburg, H., & Müller, S. (2004). Natural variation in the response of Caenorhabditis elegans towards Bacillus thuringiensis. Parasitology, 128(Pt 4), 433–443. doi:10.1017/s003118200300461x
  • Sengupta, P., Chou, J.H., & Bargmann, C.I. (1996). odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell, 84(6), 899–909. doi:10.1016/S0092-8674(00)81068-5
  • Shivers, R.P., Kooistra, T., Chu, S.W., Pagano, D.J., & Kim, D.H. (2009). Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host & Microbe, 6(4), 321–330. doi:10.1016/j.chom.2009.09.001
  • Shtonda, B.B., & Avery, L. (2006). Dietary choice behavior in Caenorhabditis elegans. The Journal of Experimental Biology, 209(Pt 1), 89–102. doi:10.1242/jeb.01955
  • Tan, M.W., Mahajan-Miklos, S., & Ausubel, F.M. (1999). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 96(2), 715–720. doi:10.1073/pnas.96.2.715
  • Thomas, J.H. (1990). Genetic analysis of defecation in Caenorhabditis elegans. Genetics, 124, 855–872.
  • Torayama, I., Ishihara, T., & Katsura, I. (2007). Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(4), 741–750. doi:10.1523/JNEUROSCI.4312-06.2007
  • Tran, A., Tang, A., O’Loughlin, C.T., Balistreri, A., Chang, E., Coto Villa, D., … VanHoven, M.K. (2017). C. elegans avoids toxin-producing Streptomyces using a seven transmembrane domain chemosensory receptor. eLife, 6. doi:10.7554/eLife.23770
  • Trent, C., Tsuing, N., & Horvitz, H.R. (1983). Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics, 104(4), 619–647.
  • Troemel, E.R., Chu, S.W., Reinke, V., Lee, S.S., Ausubel, F.M., & Kim, D.H. (2006). p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genetics, 2(11), e183. doi:10.1371/journal.pgen.0020183
  • Virk, B., Correia, G., Dixon, D.P., Feyst, I., Jia, J., Oberleitner, N., … Ward, J. (2012). Excessive folate synthesis limits lifespan in the C. elegans: E. coli aging model. BMC Biology, 10(1), 67. doi:10.1186/1741-7007-10-67
  • Wakabayashi, T., Kitagawa, I., & Shingai, R. (2004). Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neuroscience Research, 50(1), 103–111. doi:10.1016/j.neures.2004.06.005
  • Ward, S. (1973). Chemotaxis by the nematode Caenorhabditis elegans: Identification of attractants and analysis of the response by use of mutants. Proceedings of the National Academy of Sciences of the United States of America, 70(3), 817–821. doi:10.1073/pnas.70.3.817
  • Watson, E., MacNeil, L.T., Ritter, A.D., Yilmaz, L.S., Rosebrock, A.P., Caudy, A.A., & Walhout, A.J.M. (2014). Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell, 156(4), 759–770. doi:10.1016/j.cell.2014.01.047
  • Wei, J.-Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C., & Aroian, R.V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2760–2765. doi:10.1073/pnas.0538072100
  • Werner, K.M., Perez, L.J., Ghosh, R., Semmelhack, M.F., & Bassler, B.L. (2014). Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. The Journal of Biological Chemistry, 289(38), 26566–26573. doi:10.1074/jbc.M114.573832
  • Witham, E., Comunian, C., Ratanpal, H., Skora, S., Zimmer, M., & Srinivasan, S. (2016). C. elegans body cavity neurons are homeostatic sensors that integrate fluctuations in oxygen availability and internal nutrient reserves. Cell Reports, 14(7), 1641–1654. doi:10.1016/j.celrep.2016.01.052
  • Worthy, S.E., Haynes, L., Chambers, M., Bethune, D., Kan, E., Chung, K., … Glater, E.E. (2018a). Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans. PloS One, 13(7), e0201158. doi:10.1371/journal.pone.0201158
  • Worthy, S.E., Rojas, G.L., Taylor, C.J., & Glater, E.E. (2018b). Identification of odor blend used by Caenorhabditis elegans for pathogen recognition. Chemical Senses, 43(3), 169–180. doi:10.1093/chemse/bjy001
  • Yang, N.J., & Chiu, I.M. (2017). Bacterial signaling to the nervous system through toxins and metabolites. Journal of Molecular Biology, 429(5), 587–605. doi:10.1016/j.jmb.2016.12.023
  • Yap, E.-L., & Greenberg, M.E. (2018). Activity-regulated transcription: Bridging the gap between neural activity and behavior. Neuron, 100(2), 330–348. doi:10.1016/j.neuron.2018.10.013
  • Yook, K., & Hodgkin, J. (2007). Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics, 175(2), 681–697. doi:10.1534/genetics.106.060087
  • Zaslaver, A., Liani, I., Shtangel, O., Ginzburg, S., Yee, L., & Sternberg, P.W. (2015). Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 1185–1189. doi:10.1073/pnas.1423656112
  • Zhang, Y., Lu, H., & Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438(7065), 179–184. doi:10.1038/nature04216
  • Zimmer, M., Gray, J.M., Pokala, N., Chang, A.J., Karow, D.S., Marletta, M.A., … Bargmann, C.I. (2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron, 61(6), 865–879. doi:10.1016/j.neuron.2009.02.013
  • Zugasti, O., Bose, N., Squiban, B., Belougne, J., Kurz, C.L., Schroeder, F.C., … Ewbank, J.J. (2014). Activation of a G protein-coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nature Immunology, 15(9), 833–838. doi:10.1038/ni.2957