2,899
Views
8
CrossRef citations to date
0
Altmetric
Section 2: Nervous system development

Synaptic remodeling, lessons from C. elegans

ORCID Icon & ORCID Icon
Pages 307-322 | Received 11 Apr 2020, Accepted 07 Jul 2020, Published online: 18 Aug 2020

References

  • Afroz, S., Parato, J., Shen, H., & Smith, S.S. (2016). Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABA A receptors on dendritic spines. eLife, 5, e15106. doi:10.7554/eLife.15106
  • Baas, P.W., & Lin, S. (2011). Hooks and comets : The story of microtubule polarity orientation in the neuron. Developmental Neurobiology, 71(6), 403–418. doi:10.1002/dneu.20818
  • Babu, M.M., Luscombe, N.M., Aravind, L., Gerstein, M., & Teichmann, S.A. (2004). Structure and evolution of transcriptional regulatory networks. Current Opinion in Structural Biology, 14(3), 283–291. doi:10.1016/j.sbi.2004.05.004
  • Brenner, S. (1973). The genetics of behaviour. British Medical Bulletin, 29(3), 269–271. doi:10.1093/oxfordjournals.bmb.a071019
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77 (1), 71–94.
  • Bujalka, H., Koenning, M., Jackson, S., Perreau, V.M., Pope, B., Hay, C.M., … Emery, B. (2013). MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes. PLoS Biology, 11(8), e1001625. doi:10.1371/journal.pbio.1001625
  • Cavodeassi, F., Modolell, J., & Gómez-Skarmeta, J.L. (2001). The Iroquois family of genes: From body building to neural patterning. Development (Cambridge, England), 128 (15), 2847–2855.
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W., & Prasher, D. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802–805. doi:10.1126/science.8303295
  • Cinar, H., Keles, S., & Jin, Y. (2005). Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Current Biology : CB, 15 (4), 340–346. https://doi.org/10.1016/j. doi:10.1016/j.cub.2005.02.025
  • Cuentas-Condori, A., Mulcahy, B., He, S., Palumbos, S., Zhen, M., & Miller, D.M. (2019). C. elegans neurons have functional dendritic spines. eLife, 8, e47918. doi:10.7554/eLife.47918
  • De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., & Svoboda, K. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49 (6), 861–875. doi:10.1016/j.neuron.2006.02.017
  • Debello, W.M., Feldman, D.E., & Knudsen, E.I. (2001). Adaptive axonal remodeling in the midbrain auditory space map. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(9), 3161–3174. doi:10.1523/JNEUROSCI.21-09-03161.2001
  • Deidda, G., Allegra, M., Cerri, C., Naskar, S., Bony, G., Zunino, G., … Cancedda, L. (2015). Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nature Neuroscience, 18(1), 87–96. doi:10.1038/nn.3890
  • Dotti, C., & Banker, G. (1987). Experimentally induced alteration in the polarity of developin neurons. Nature, 330(6145), 254–256. doi:10.1038/330254a0
  • Eastman, C., Horvitz, H.R., & Jin, Y. (1999). Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. The Journal of Neuroscience, 19(15), 6225–6234. doi:10.1523/JNEUROSCI.19-15-06225.1999
  • Emmons, S.W. (2015). The beginning of connectomics: A commentary on White et al. (1986) ‘The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1666), 20140309. doi:10.1098/rstb.2014.0309
  • Gardner, M.K., Zanic, M., & Howard, J. (2013). Microtubule catastrophe and rescue. Current Opinion in Cell Biology, 25(1), 14–19. doi:10.1016/j.ceb.2012.09.006
  • Ghosh-Roy, A., Goncharov, A., Jin, Y., & Chisholm, A.D. (2012). Kinesin-13 and tubulin posttranslational modifications regulate microtubule growth in axon regeneration. Developmental Cell, 23(4), 716–728. doi:10.1016/j.devcel.2012.08.010
  • Ghosh-Roy, A., Wu, Z., Goncharov, A., Jin, Y., & Chisholm, A.D. (2010). Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 30(9), 3175–3183. doi:10.1523/JNEUROSCI.5464-09.2010
  • Hallam, S.J., & Jin, Y. (1998). lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature, 395(6697), 78–82. doi:10.1038/25757
  • Halls, M.L., & Cooper, D.M.F. (2011). Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harbor Perspectives in Biology, 3(1), a004143. doi:10.1101/cshperspect.a004143
  • Han, B., Bellemer, A., & Koelle, M.R. (2015). An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans. Genetics, 199 (4), 1159–1172. doi:10.1534/genetics.114.173963
  • Hardy, P.A. (1990). Genetic aspects of nervous system development. Journal of Neurogenetics, 6(3), 115–131. doi:10.3109/01677069009107105
  • He, S., Cuentas-Condori, A., & Miller, D.M. (2019). NATF (Native and Tissue-Specific Fluorescence): A strategy for brigth, tissue-specific GFP labeling of native proteins in Caenorhabditis elegans. Genetics, 212(2), 387–395. doi:10.1534/genetics.119.302063
  • Hefel, A., & Smolikove, S. (2019). Tissue-specific split sfGFP system for streamlined expression of GFP tagged proteins in the Caenorhabditis elegans germline. G3 (Bethesda, Md.), 9(6), 1933–1943. doi:10.1534/g3.119.400162
  • Hendi, A., Kurashina, M., & Mizumoto, K. (2019). Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cellular and Molecular Life Sciences, 76(14), 2719–2738. doi:10.1007/s00018-019-03109-1
  • Hendry, S.H.C., Schwark, H.D., & Jones, E.G. (1987). Numbers and proportions of GABA-immunoreactive different areas of monkey cerebral cortex neurons. Journal of Neuroscience, 7, 1503–1519.
  • Hensch, T.K., Fagiolini, M., Mataga, N., Stryker, M.P., Baekkeskov, S., & Kash, S.F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science (New York, N.Y.), 282(5393), 1504–1509. doi:10.1126/science.282.5393.1504
  • He, S., Philbrook, A., McWhirter, R., Gabel, C.V., Taub, D.G., Carter, M.H., … Miller, D.M. (2015). Transcriptional control of synaptic remodeling through regulated expression of an immunoglobulin superfamily protein. Current Biology : CB, 25(19), 2541–2548. doi:10.1016/j.cub.2015.08.022
  • Hering, H., Sheng, M., & Medical, H.H. (2001). Dendritic spines : Structure, dynamics and regulaion. Nature Reviews Neuroscience, 2(12), 880–888. doi:10.1038/35104061
  • Hong, Y.K., & Chen, C. (2011). Wiring and rewiring of the retinogeniculate synapse. Current Opinion in Neurobiology, 21(2), 228–237. doi:10.1016/j.conb.2011.02.007
  • Hong, Y.K., Park, S.H., Litvina, E.Y., Morales, J., Sanes, J.R., & Chen, C. (2014). Refinement of the Retinogeniculate Synapse by Bouton Clustering. Neuron, 84(2), 332–339. doi:10.1016/j.neuron.2014.08.059
  • Houweling, A.C., Dildrop, R., Peters, T., Mummenhoff, J., Moorman, A.F., Rüther, U., & Christoffels, V.M. (2001). Gene and cluster-specific expression of the Iroquois family members during mouse development. Mechanisms of Development, 107 (1-2), 169–174. doi:10.1016/S0925-4773(01)00451-8
  • Howell, K., White, J.G., & Hobert, O. (2015). Spatiotemporal control of a novel synaptic organizer molecule. Nature, 523(7558), 83–87. doi:10.1038/nature14545
  • Hristova, M., Birse, D., Hong, Y., & Ambros, V. (2005). The Caenorhabditis elegans heterochronic regulator LIN-14 is a novel transcription factor that controls the developmental timing of transcription from the insulin/insulin-like growth factor gene ins-33 by direct DNA binding. Molecular and Cellular Biology, 25(24), 11059–11072. doi:10.1128/MCB.25.24.11059-11072.2005
  • Jin, Y., Hoskins, R., & Horvitz, H.R. (1994). Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature, 372(6508), 780–783. doi:10.1038/372780a0
  • Jin, Y., Jorgensen, E., Hartwieg, E., & Horvitz, H.R. (1999). The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 19(2), 539–548. doi:10.1523/JNEUROSCI.19-02-00539.1999
  • Jin, Y., & Qi, Y.B. (2018). Building stereotypic connectivity: Mechanistic insights into structural plasticity from C. elegans. Current Opinion in Neurobiology, 48, 97–105. doi:10.1016/j.conb.2017.11.005
  • Jorgensen, E.M., Hartwieg, E., Schuske, K., Nonet, M.L., Jin, Y., & Horvitz, H.R. (1995). Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature, 378(6553), 196–199. doi:10.1038/378196a0
  • Kang, E., Durand, S., Leblanc, J.J., Hensch, T.K., Chen, C., & Fagiolini, M. (2013). Visual acuity development and plasticity in the absence of sensory experience. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(45), 17789–17796. doi:10.1523/JNEUROSCI.1500-13.2013
  • Kawaguchi, Y., Karube, F., & Kubota, Y. (2006). Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cerebral Cortex (New York, N.Y. : 1991), 16(5), 696–711. doi:10.1093/cercor/bhj015
  • Knudsen, E.I., & Knudsen, F. (1989). Vision calibrates sound localization in developing barn owls. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 9(9), 3306–3313. doi:10.1523/JNEUROSCI.09-09-03306.1989
  • Koch, S.M., Dela Cruz, C.G., Hnasko, T.S., Edwards, R.H., Huberman, A.D., & Ullian, E.M. (2011). Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. Neuron, 71(2), 235–242. doi:10.1016/j.neuron.2011.05.045
  • Kurup, N., & Jin, Y. (2016). Neural circuit rewiring: Insights from DD synapse remodeling. Worm, 5(1), e1129486. doi:10.1080/21624054.2015.1129486
  • Kurup, N., Li, Y., Goncharov, A., & Jin, Y. (2018). Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons. Proceedings of the National Academy of Sciences, 115(12), 3114–3119. doi:10.1073/pnas.1721930115
  • Kurup, N., Yan, D., Goncharov, A., & Jin, Y. (2015). Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling. Current Biology : CB, 25(12), 1594–1605. doi:10.1016/j.cub.2015.04.061
  • Kurup, N., Yan, D., Kono, K., & Jin, Y. (2017). Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans. PLOS Genetics, 13(6), e1006844. doi:10.1371/journal.pgen.1006844
  • Lee, H.K., Kameyama, K., Huganir, R.L., & Bear, M.F. (1998). NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron, 21(5), 1151–1162. doi:10.1016/S0896-6273(00)80632-7
  • Lehmann, K., Steinecke, A., & Bolz, J. (2012). GABA through the ages: Regulation of cortical function and plasticity by inhibitory interneurons. Neural Plasticity, 2012, 892784. doi:10.1155/2012/892784
  • Liu, C., Bickford, L.S., Held, R.G., Nyitrai, H., Su, T.C., & Kaeser, P.S. (2014). The active zone protein family ELKS supports Ca2+ influx at nerve terminals of inhibitory hippocampal neurons. The Journal of neuroscience : The official journal of the Society for Neuroscience, 34(37), 12289–12303. doi:10.1523/JNEUROSCI.0999-14.2014
  • Mcbride, T.J., & Debello, W.M. (2015). Input clustering in the normal and learned circuits of adult barn owls. Neurobiology of Learning and Memory, 121, 39–51. doi:10.1016/j.nlm.2015.01.011
  • Mcbride, T.J., Rodriguez-Contreras, A., Trinh, A., Bailey, R., & Debello, W.M. (2008). Learning drives differential clustering of axodendritic contacts in the barn owl auditory system. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(27), 6960–6973. doi:10.1523/JNEUROSCI.1352-08.2008
  • Mclntire, S.L., Jorgensen, E., & Horvitz, H.R. (1993a). Genes required for GABA function in Caenorhabditis elegans. Nature, 364(6435), 334–337. doi:10.1038/364334a0
  • Mclntire, S.L., Jorgensen, E., Kaplan, J., & Horvitz, H.R. (1993b). The GABAergic nervous system of C. elegans. Nature, 364(6435), 337–414. doi:10.1038/364337a0
  • Mello, C., Kramer, J., Stinchcomb, D., & Ambros, V. (1991). Efficient gene transfer in C. elegans: Extrahcormosomal maintenance and integration of transforming sequences. The Embo Journal, 10(12), 3959–3970. doi:10.1002/j.1460-2075.1991.tb04966.x
  • Meng, J., Ma, X., Tao, H., Jin, X., Witvliet, D., Mitchell, J., … Qi, Y.B. (2017). Myrf ER-bound transcription factors drive C. elegans synaptic plasticity via cleavage-dependent nuclear translocation. Developmental Cell, 41(2), 180–194.e7. doi:10.1016/j.devcel.2017.03.022
  • Meng, L., Mulcahy, B., Cook, S.J., Neubauer, M., Wan, A., Jin, Y., & Yan, D. (2015). The cell death pathway regulates synapse elimination through cleavage of gelsolin in Caenorhabditis elegans neurons. Cell Reports, 11(11), 1737–1748. doi:10.1016/j.celrep.2015.05.031
  • Miller-Fleming, T.W. (2016). Molecular dissection of synaptic remodeling in GABAergic neurons.
  • Miller-Fleming, T.W., Cuentas-Condori, A., Palumbos, S., Manning, L., Richmond, J.R., & Miller, D.M. (2020). Transcriptional control of parallel-acting pathways that remove discrete presynaptic proteins in remodeling neurons. BioRxiv.
  • Miller-Fleming, T.W., Petersen, S.C., Manning, L., Matthewman, C., Gornet, M., Beers, A., … Miller, D.M. (2016). The DEG/ENaC cation channel protein UNC-8 drives activity-dependent synapse removal in remodeling GABAergic neurons. eLife, 5, e14599. doi:10.7554/eLife.14599
  • Morgan, J.L., Soto, F., Wong, R.O.L., & Kerschensteiner, D. (2011). Development of cell type-specific connectivity patterns of converging excitatory axons in the retina. Neuron, 71(6), 1014–1021. doi:10.1016/j.neuron.2011.08.025
  • Nonet, M.L. (1999). Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. Journal of Neuroscience Methods, 89(1), 33–40. doi:10.1016/S0165-0270(99)00031-X
  • Nonet, M.L., Saifee, O., Zhao, H., Rand, J.B., & Wei, L. (1998). Synaptic transmission deficits in Caenorhabditis elegans synaptobrevin mutants. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 18(1), 70–80. doi:10.1523/JNEUROSCI.18-01-00070.1998
  • Orr, B.O., Gorczyca, D., Younger, M.A., Jan, L.Y., Jan, Y.N., & Davis, G.W. (2017). Composition and control of a Deg/ENaC channel during presynaptic homeostatic plasticity. Cell Reports, 20(8), 1855–1866. doi:10.1016/j.celrep.2017.07.074
  • Park, M., Watanabe, S., Poon, V.Y.N., Ou, C.Y., Jorgensen, E.M., & Shen, K. (2011). CYY-1/Cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring neural circuits. Neuron, 70(4), 742–757. doi:10.1016/j.neuron.2011.04.002
  • Pelkey, K.A., Chittajallu, R., Craig, M.T., Tricoire, L., Wester, J.C., & Mcbain, X.C.J. (2017). Hippocampal GABAergic inhibitory interneurons. Physiological Reviews, 97 (4), 1619–1747. doi:10.1152/physrev.00007.2017
  • Petersen, S.C., Watson, J.D., Richmond, J.E., Sarov, M., Walthall, W.W., & Miller, D.M. (2011). A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 31(43), 15362–15375. doi:10.1523/JNEUROSCI.3181-11.2011
  • Petrash, H.A., Philbrook, A., Haburcak, M., Barbagallo, B., & Francis, M.M. (2013). ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(13), 5524–5532. doi:10.1523/JNEUROSCI.4384-12.2013
  • Philbrook, A., Ramachandran, S., Lambert, C.M., Oliver, D., Florman, J., Alkema, M.J., … Francis, M.M. (2018). Neurexin directs partner-specific synaptic connectivity in C. elegans. eLife, 7, e35692. doi:10.7554/eLife.35692
  • Ruvkun, G., & Giusto, J. (1989). The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature, 338(6213), 313–319. doi:10.1038/338313a0
  • Sanderson, J.L., Gorski, J.A., Gibson, E.S., Lam, P., Freund, R.K., Chick, W.S., & Dell'Acqua, M.L. (2012). Akap150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca2+-permeable AMPA receptors. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(43), 15036–15052. doi:10.1523/JNEUROSCI.3326-12.2012
  • Schuske, K., Beg, A.A., & Jorgensen, E.M. (2004). The GABA nervous system in C. elegans. Trends in Neurosciences, 27(7), 407–414. doi:10.1016/j.tins.2004.05.005
  • Schwartz, M.L., & Jorgensen, E.M. (2016). SapTrap, a toolkit for high-throughput CRISPR/Cas9 gene modification in Caenorhabditis elegans. Genetics, 202(4), 1277–1288. doi:10.1534/genetics.115.184275
  • Shan, G., Kim, K., Li, C., & Walthall, W.W. (2005). Convergent genetic programs regulate similarities and differences between related motor neuron classes in Caenorhabditis elegans. Developmental Biology, 280(2), 494–503. doi:10.1016/j.ydbio.2005.01.032
  • Sherwood, C.C., Raghanti, M.A., Stimpson, C.D., Spocter, M.A., Uddin, M., Boddy, A.M., … Hof, P.R. (2010). Inhibitory interneurons of the human prefrontal cortex display conserved evolution of the phenotype and related genes. Proceedings. Biological Sciences, 277(1684), 1011–1020. doi:10.1098/rspb.2009.1831
  • Shreffler, W., & Wolinsky, E. (1997). Genes controlling ion permeability in both motorneurons and muscle. Behavior Genetics, 27(3), 211–221. doi:10.1023/A:1025605929373
  • Spencer, W.C., McWhirter, R., Miller, T., Strasbourger, P., Thompson, O., Hillier, L.W., … Miller, D.M. (2014). Isolation of specific neurons from C. elegans larvae for gene expression profiling. PLoS One., 9(11), e112102. doi:10.1371/journal.pone.0112102
  • Stettler, D.D., Yamahachi, H., Li, W., Denk, W., & Gilbert, C.D. (2006). Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron, 49(6), 877–887. doi:10.1016/j.neuron.2006.02.018
  • Südhof, T. (2018). Towards an understanding of synapse formation. Neuron, 100(2), 276–293. doi:10.1016/j.neuron.2018.09.040
  • Sullivan, C.S., Gotthard, I., Wyatt, E.V., Bongu, S., Mohan, V., Weinberg, R.J., & Maness, P.F. (2018). Perineuronal net protein neurocan inhibits NCAM/EphA3 repellent signaling in GABAergic interneurons. Scientific Reports, 8(1), 1–15. doi:10.1038/s41598-018-24272-8
  • Sulston, J.E. (1976). Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London, 275(938), 287–297.
  • Sulston, J.E., & Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56 (1), 110–156. doi:10.1016/0012-1606(77)90158-0
  • Taylor, S., Santpere, G., Reilly, M., Glenwinkel, L., Poff, A., McWhirther, R., … Miller, D.M. III, (2019). Expression profiling of the mature C. elegans nervous system by single-cell RNA-Sequencing. BioRxiv.
  • Thompson-Peer, K.L., Bai, J., Hu, Z., & Kaplan, J. (2012). HBL-1 patterns synaptic remodeling in C. elegans. Neuron, 73(3), 453–465. doi:10.1016/j.neuron.2011.11.025
  • Tsuriel, S., Geva, R., Zamorano, P., Dresbach, T., Boeckers, T., Gundelfinger, E.D., … Ziv, N.E. (2006). Local sharing as a predominant determinant of synaptic matrix molecular dynamics. PLoS Biology, 4(9), e271. doi:10.1371/journal.pbio.0040271
  • Varoqueaux, F., Sigler, A., Rhee, J., Brose, N., Enk, C., Reim, K., & Rosenmund, C. (2002). Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proceedings of the National Academy of Sciences, 99(13), 9037–9042. doi:10.1073/pnas.122623799
  • Walthall, W.W., & Plunkett, J.A. (1995). Genetic transformation of the synaptic pattern of a motoneuron class in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 15(2), 1035–1043. doi:10.1523/JNEUROSCI.15-02-01035.1995
  • Wang, Y., Matthewman, C., Han, L., Miller, T., Miller, D.M., & Bianchi, L. (2013). Neurotoxic unc-8 mutants encode constitutively active DEG/ENaC channels that are blocked by divalent cations. The Journal of General Physiology, 142(2), 157–169. doi:10.1085/jgp.201310974
  • White, J.G., Albertson, D.G., & Anness, M. (1978). Connectivity changes in a class of motoneurone during the development of a nematode. Nature, 271 (5647), 764–766. doi:10.1038/271764a0
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1976). The structure of the ventral nerve cord of Caenorhadbitis elegans. Philosophical Transactions of the Royal Society of London, 275:327–348.
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056
  • Whitington, P.M., & Sink, H. (2004). Development of a polar morphology by identified embryonic motoneurons. International Journal of Developmental Neuroscience : The Official Journal of the International Society for Developmental Neuroscience, 22 (1), 39–45. doi:10.1016/j.ijdevneu.2003.10.004
  • Winder, D.G., Mansuy, I.M., Osman, M., Moallem, T.M., & Kandel, E.R. (1998). Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell, 92(1), 25–37. doi:10.1016/S0092-8674(00)80896-X
  • Wu, X., Fu, Y., Knott, G., Lu, J., Di Cristo, G., & Huang, Z.J. (2012). GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(1), 331–343. doi:10.1523/JNEUROSCI.3189-11.2012
  • Younger, M.A., Mu, M., Tong, A., Pym, E.C., & Davis, G.W. (2013). A Presynaptic ENaC Channel Drives Homeostatic Plasticity. Neuron, 79 (6), 1183–1196. doi:10.1016/j.neuron.2013.06.048
  • Yu, B., Wang, X., Wei, S., Fu, T., Dzakah, E.E., Waqas, A., … Shan, G. (2017). Convergent Transcriptional Programs Regulate cAMP Levels in C. elegans GABAergic Motor Neurons. Developmental Cell, 43 (2), 212–215. doi:10.1016/j.devcel.2017.09.013
  • Zhou, H., & Walthall, W. (1998). UNC-55, an Orphan Nuclear Hormone Receptor, Orchestrates Synaptic Specificity among Two Classes of Motor Neurons in Caenorhabditis elegans. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 18(24), 10438–10444. doi:10.1523/JNEUROSCI.18-24-10438.1998