1,681
Views
20
CrossRef citations to date
0
Altmetric
Section 6: Survival, aging and disease

The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases

, &
Pages 527-548 | Received 09 Mar 2020, Accepted 27 Jul 2020, Published online: 08 Aug 2020

References

  • Ahn, B.-H., Rhim, H., Kim, S.Y., Sung, Y.-M., Lee, M.-Y., Choi, J.-Y., … Min, D.S. (2002). alpha-synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. The Journal of Biological Chemistry, 277(14), 12334–12342. doi:10.1074/jbc.M110414200
  • Al-Chalabi, A., Jones, A., Troakes, C., King, A., Al-Sarraj, S., & Van Den Berg, L.H. (2012). The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 124(3), 339–352. doi:10.1007/s00401-012-1022-4
  • Alexander, A.G., Marfil, V., & Li, C. (2014). Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Frontiers in Genetics, 5, 279. doi:10.3389/fgene.2014.00279
  • Alonso, A.D.C., Zaidi, T., Novak, M., Grundke-Iqbal, I., & Iqbal, K. (2001). Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6923–6928. doi:10.1073/pnas.121119298
  • Armenti, S.T., Lohmer, L.L., Sherwood, D.R., & Nance, J. (2014). Repurposing an endogenous degradation system for rapid and targeted depletion of C. elegans proteins. Development, 141(23), 4640–4647. doi:10.1242/dev.115048
  • Ash, P.E.A., Zhang, Y.-J., Roberts, C.M., Saldi, T., Hutter, H., Buratti, E., … Link, C.D. (2010). Neurotoxic effects of TDP-43 overexpression in C. elegans. Human Molecular Genetics, 19(16), 3206–3218. doi:10.1093/hmg/ddq230
  • Asikainen, S., Vartiainen, S., Lakso, M., Nass, R., & Wong, G. (2005). Selective sensitivity of Caenorhabditis elegans neurons to RNA interference. Neuroreport, 16(18), 1995–1999. doi:10.1097/00001756-200512190-00005
  • Balendra, R., & Isaacs, A.M. (2018). C9orf72-mediated ALS and FTD: Multiple pathways to disease. Nature Reviews Neurology, 14(9), 544–558. doi:10.1038/s41582-018-0047-2
  • Bandres-Ciga, S., Diez-Fairen, M., Kim, J.J., & Singleton, A.B. (2020). Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiology of Disease, 137, 104782. doi:10.1016/j.nbd.2020.104782
  • Baskoylu, S.N., Chapkis, N., Unsal, B., Lins, J., Schuch, K., Simon, J., & Hart, A.C. (2019). Disrupted Autophagy and Neuronal Dysfunction in C. elegans Knock-in Models of FUS Amyotrophic Lateral Sclerosis. BioRxiv, 7, 799932. doi:10.1101/799932
  • Baskoylu, S.N., Yersak, J., O’Hern, P., Grosser, S., Simon, J., Kim, S., … Hart, A.C. (2018). Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration. PLoS Genetics, 14(10), e1007682. doi:10.1371/journal.pgen.1007682
  • Bates, E.A., Victor, M., Jones, A.K., Shi, Y., & Hart, A.C. (2006). Differential contributions of Caenorhabditis elegans histone deacetylases to huntingtin polyglutamine toxicity. Journal of Neuroscience, 26(10), 2830–2838. doi:10.1523/JNEUROSCI.3344-05.2006
  • Bates, G. (2003). Huntingtin aggregation and toxicity in Huntington’s disease. The Lancet, 361(9369), 1642–1644. doi:10.1016/S0140-6736(03)13304-1
  • Bauer, P.O., & Nukina, N. (2009). The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. Journal of Neurochemistry, 110(6), 1737–1765. doi:10.1111/j.1471-4159.2009.06302.x
  • Bellani, S., Sousa, V.L., Ronzitti, G., Valtorta, F., Meldolesi, J., & Chieregatti, E. (2010). The regulation of synaptic function by alpha-synuclein. Communicative & Integrative Biology, 3(2), 106–109. doi:10.4161/cib.3.2.10964
  • Bellenguez, C., Grenier-Boley, B., & Lambert, J.C. (2020). Genetics of Alzheimer’s disease: Where we are, and where we are going. Current Opinion in Neurobiology, 61, 40–48. doi:10.1016/j.conb.2019.11.024
  • Benbow, S.J., Strovas, T.J., Darvas, M., Saxton, A., & Kraemer, B.C. (2020). Synergistic toxicity between tau and amyloid drives neuronal dysfunction and neurodegeneration in transgenic C. elegans. Human Molecular Genetics, 29(3), 495–505. doi:10.1093/hmg/ddz319
  • Bieschke, J., Cohen, E., Murray, A., Dillin, A., & Kelly, J.W. (2009). A kinetic assessment of the C. elegans amyloid disaggregation activity enables uncoupling of disassembly and proteolysis. Protein Science: A Publication of the Protein Society, 18(11), 2231–2241. doi:10.1002/pro.234
  • Bramblett, G.T., Goedert, M., Jakes, R., Merrick, S.E., Trojanowski, J.Q., & Lee, V.M.Y. (1993). Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron, 10(6), 1089–1099. doi:10.1016/0896-6273(93)90057-X
  • Brandt, R., Gergou, A., Wacker, I., Fath, T., & Hutter, H. (2009). A Caenorhabditis elegans model of tau hyperphosphorylation: Induction of developmental defects by transgenic overexpression of Alzheimer’s disease-like modified tau. Neurobiology of Aging, 30(1), 22–33. doi:10.1016/j.neurobiolaging.2007.05.011
  • Brignull, H.R., Moore, F.E., Tang, S.J., & Morimoto, R.I. (2006). Polyglutamine proteins at the pathogenic threshold display neuron-specific aggregation in a pan-neuronal Caenorhabditis elegans model. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(29), 7597–7606. doi:10.1523/JNEUROSCI.0990-06.2006
  • Cabin, D.E., Shimazu, K., Murphy, D., Cole, N.B., Gottschalk, W., McIlwain, K.L., … Nussbaum, R.L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(20), 8797–8807. doi:10.1523/JNEUROSCI.22-20-08797.2002
  • Cabreiro, F., Ackerman, D., Doonan, R., Araiz, C., Back, P., Papp, D., … Gems, D. (2011). Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radical Biology & Medicine, 51(8), 1575–1582. doi:10.1016/j.freeradbiomed.2011.07.020
  • Calixto, A., Chelur, D., Topalidou, I., Chen, X., & Chalfie, M. (2010). Enhanced neuronal RNAi in C. elegans using SID-1. Nature Methods, 7(7), 554–559. doi:10.1038/nmeth.1463
  • Canet-Avilés, R.M., Wilson, M.A., Miller, D.W., Ahmad, R., McLendon, C., Bandyopadhyay, S., … Cookson, M.R. (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101(24), 9103–9108. doi:10.1073/pnas.0402959101
  • Cao, S., Gelwix, C.C., Caldwell, K.A., & Caldwell, G.A. (2005). Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(15), 3801–3812. doi:10.1523/JNEUROSCI.5157-04.2005
  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., & Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802–805. doi:10.1126/science.8303295
  • Chen, C., Turnbull, D.M., & Reeve, A.K. (2019). Mitochondrial dysfunction in Parkinson’s disease—cause or consequence? Biology, 8(2), 38. doi:10.3390/biology8020038
  • Chen, C.H., Chen, Y.C., Jiang, H.C., Chen, C.K., & Pan, C.L. (2013). Neuronal aging: Learning from C. elegans. Journal of Molecular Signaling, 8 (1), 10–14. doi:10.1186/1750-2187-8-14
  • Chew, Y.L., Fan, X., Götz, J., & Nicholas, H.R. (2013). PTL-1 regulates neuronal integrity and lifespan in C. elegans. Journal of Cell Science, 126(9), 2079–2091. doi:10.1242/jcs.jcs124404
  • Choudhary, B., Kamak, M., Ratnakaran, N., Kumar, J., Awasthi, A., Li, C., … Koushika, S.P. (2017). UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK18 1/LRRK2 and AP complexes. PLoS Genetics, 13(11), 1–25. doi:10.1371/journal.pgen.1007100
  • Cook, S.J., Jarrell, T.A., Brittin, C.A., Wang, Y., Bloniarz, A.E., Yakovlev, M.A., … Emmons, S.W. (2019). Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature, 571(7763), 63–71. doi:10.1038/s41586-019-1352-7
  • Cooper, A.A., Gitler, A.D., Cashikar, A., Haynes, C.M., Hill, K.J., Bhullar, B., … Lindquist, S. (2006). Alpha-synuclein blocks ER-golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science, 313(5785), 324–329. doi:10.1126/science.1129462
  • Cooper, J.F., Machiela, E., Dues, D.J., Spielbauer, K.K., Senchuk, M.M., & Van Raamsdonk, J.M. (2017). Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson’s disease models. Scientific Reports, 7(1), 16441. doi:10.1038/s41598-017-16637-2
  • Cooper, J.F., & Van Raamsdonk, J.M. (2018). Modeling Parkinson’s disease in C. elegans. Journal of Parkinson’s Disease, 8(1), 17–32. doi:10.3233/JPD-171258
  • Corrionero, A., & Horvitz, H.R. (2018). A C9orf72 ALS/FTD ortholog acts in endolysosomal degradation and lysosomal homeostasis. Current Biology, 28(10), 1522.e5–1535.e5. doi:10.1016/j.cub.2018.03.063
  • Cudkowicz, M.E., McKenna-Yasek, D., Sapp, P.E., Chin, W., Geller, B., Hayden, D.L., … Brown, R.H. (1997). Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Annals of Neurology, 41(2), 210–221. doi:10.1002/ana.410410212
  • DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., … Rademakers, R. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 72(2), 245–256. doi:10.1016/j.neuron.2011.09.011
  • Dickinson, D.J., Ward, J.D., Reiner, D.J., & Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods, 10(10), 1028–1034. doi:10.1038/nmeth.2641
  • DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., & Aronin, N. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277(5334), 1990–1993. doi:10.1126/science.277.5334.1990
  • Dourlen, P., Kilinc, D., Malmanche, N., Chapuis, J., & Lambert, J.C. (2019). The new genetic landscape of Alzheimer’s disease: From amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathologica, 138(2), 221–236. doi:10.1007/s00401-019-02004-0
  • Estes, P.S., Boehringer, A., Zwick, R., Tang, J.E., Grigsby, B., & Zarnescu, D.C. (2011). Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Human Molecular Genetics, 20(12), 2308–2321. doi:10.1093/hmg/ddr124
  • Faber, P.W., Voisine, C., King, D.C., Bates, E.A., & Hart, A.C. (2002). Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 99(26), 17131–17136. doi:10.1073/pnas.262544899
  • Fahn, S., & Sulzer, D. (2004). Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx: The Journal of the American Society for Experimental Neurotherapeutics, 1(1), 139–154. doi:10.1602/neurorx.1.1.139
  • Fan, H.-C., Ho, L.-I., Chi, C.-S., Chen, S.-J., Peng, G.-S., Chan, T.-M., … Harn, H.-J. (2014). Polyglutamine (PolyQ) diseases: Genetics to treatments. Cell Transplantation, 23(4–5), 441–458. doi:10.3727/096368914X678454
  • Fay, D.S., Fluet, A., Johnson, C.J., & Link, C.D. (1998). In vivo aggregation of beta-amyloid peptide variants. Journal of Neurochemistry, 71(4), 1616–1625. doi:10.1046/j.1471-4159.1998.71041616.x
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. doi:10.1038/35888
  • Florez-McClure, M.L., Hohsfield, L.A., Fonte, G., Bealor, M.T., & Link, C.D. (2007). Decreased insulin-receptor signaling promotes the autophagic degradation of beta-amyloid peptide in C. elegans. Autophagy, 3(6), 569–580. doi:10.4161/auto.4776
  • Fong, S., Teo, E., Ng, L.F., Chen, C.-B., Lakshmanan, L.N., Tsoi, S.Y., … Gruber, J. (2016). Energy crisis precedes global metabolic failure in a novel Caenorhabditis elegans Alzheimer disease model. Scientific Reports, 6(1), 33781. doi:10.1038/srep33781
  • Fonte, V., Kapulkin, W.J., Kapulkin, V., Taft, A., Fluet, A., Friedman, D., & Link, C.D. (2002). Interaction of intracellular beta amyloid peptide with chaperone proteins. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9439–9444. doi:10.1073/pnas.152313999
  • Friedland, A.E., Tzur, Y.B., Esvelt, K.M., Colaiácovo, M.P., Church, G.M., & Calarco, J.A. (2013). Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 10(8), 741–743. doi:10.1038/nmeth.2532
  • Fukuzono, T., Pastuhov, S.I., Fukushima, O., Li, C., Hattori, A., Iemura, S-i., … Hisamoto, N. (2016). Chaperone complex BAG2-HSC70 regulates localization of Caenorhabditis elegans leucine-rich repeat kinase LRK-1 to the Golgi. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 21(4), 311–324. doi:10.1111/gtc.12338
  • Gidalevitz, T., Ben-Zvi, A., Ho, K.H., Brignull, H.R., & Morimoto, R.I. (2006). Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science, 311(5766), 1471–1474. doi:10.1126/science.1124514
  • Gidalevitz, T., Krupinski, T., Garcia, S., & Morimoto, R.I. (2009). Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genetics, 5(3), e1000399. doi:10.1371/journal.pgen.1000399
  • Giguère, N., Burke Nanni, S., & Trudeau, L.-E. (2018). On cell loss and selective vulnerability of neuronal populations in Parkinson’s disease. Frontiers in Neurology, 9, 455. doi:10.3389/fneur.2018.00455
  • Gitler, A.D., Chesi, A., Geddie, M.L., Strathearn, K.E., Hamamichi, S., Hill, K.J., … Lindquist, S. (2009). Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genetics, 41(3), 308–315. doi:10.1038/ng.300
  • Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D., & Crowther, R.A. (1989). Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron, 3(4), 519–526. doi:10.1016/0896-6273(89)90210-9
  • Gordon, P., Hingula, L., Krasny, M.L., Swienckowski, J.L., Pokrywka, N.J., & Raley-Susman, K.M. (2008). The invertebrate microtubule-associated protein PTL-1 functions in mechanosensation and development in Caenorhabditis elegans. Development Genes and Evolution, 218(10), 541–551. doi:10.1007/s00427-008-0250-z
  • Graffmo, K.S., Forsberg, K., Bergh, J., Birve, A., Zetterström, P., Andersen, P.M., … Brännström, T. (2013). Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis. Human Molecular Genetics, 22(1), 51–60. doi:10.1093/hmg/dds399
  • Green, D.R., & Llambi, F. (2015). Cell death signaling. Cold Spring Harbor Perspectives in Biology, 7(12), a006080. doi:10.1101/cshperspect.a006080
  • Hardy, J.A., & Higgins, G.A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256(5054), 184–185. doi:10.1126/science.1566067
  • Hartman, J.H., Gonzalez-Hunt, C., Hall, S.M., Ryde, I.T., Caldwell, K.A., Caldwell, G.A., & Meyer, J.N. (2019). Genetic defects in mitochondrial dynamics in Caenorhabditis elegans impact ultraviolet C radiation- and 6-hydroxydopamine-induced neurodegeneration. International Journal of Molecular Sciences, 20(13), 3202. doi:10.3390/ijms20133202
  • Hassan, W.M., Merin, D.A., Fonte, V., & Link, C.D. (2009). AIP-1 ameliorates beta-amyloid peptide toxicity in a Caenorhabditis elegans Alzheimer’s disease model. Human Molecular Genetics, 18(15), 2739–2747. doi:10.1093/hmg/ddp209
  • Hengartner, M.O., & Horvitz, R.H. (1994). Programmed cell death in Caenorhabditis elegans. Current Opinion in Genetics & Development, 4(4), 581–586. doi:10.1016/0959-437X(94)90076-F
  • Hergesheimer, R.C., Chami, A.A., de Assis, D.R., Vourc’h, P., Andres, C.R., Corcia, P., … Blasco, H. (2019). The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: A resolution in sight? Brain: A Journal of Neurology, 142(5), 1176–1194. doi:10.1093/brain/awz078
  • Hermann, A., Liewald, J.F., & Gottschalk, A. (2015). A photosensitive degron enables acute light-induced protein degradation in the nervous system. Current Biology , 25(17), R749–R750. doi:10.1016/j.cub.2015.07.040
  • Holdorff, B., Rodrigues e Silva, A.M., & Dodel, R. (2013). Centenary of Lewy bodies (1912-2012). Journal of Neural Transmission, 120(4), 509–516. doi:10.1007/s00702-013-0984-2
  • Hornsten, A., Lieberthal, J., Fadia, S., Malins, R., Ha, L., Xu, X., … Li, C. (2007). APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Proceedings of the National Academy of Sciences of the United States of America, 104(6), 1971–1976. doi:10.1073/pnas.0603997104
  • Huang, M., Wang, B., Li, X., Fu, C., Wang, C., & Kang, X. (2019). Α-synuclein: A multifunctional player in exocytosis, endocytosis, and vesicle recycling. Frontiers in Neuroscience, 13, 28–28. doi:10.3389/fnins.2019.00028
  • Ikenaka, K., Kawai, K., Katsuno, M., Huang, Z., Jiang, Y.-M., Iguchi, Y., … Sobue, G. (2013). dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration. PLoS One, 8(2), e54511. doi:10.1371/journal.pone.0054511
  • Ikenaka, K., Tsukada, Y., Giles, A.C., Arai, T., Nakadera, Y., Nakano, S., … Mori, I. (2019). A behavior-based drug screening system using a Caenorhabditis elegans model of motor neuron disease. Scientific Reports, 9(1), 1–10. doi:10.1038/s41598-019-46642-6
  • Janssen, J.C., Beck, J.A., Campbell, T.A., Dickinson, A., Fox, N.C., Harvey, R.J., … Collinge, J. (2003). Early onset familial Alzheimer’s disease: Mutation frequency in 31 families. Neurology, 60(2), 235–239. doi:10.1212/01.WNL.0000042088.22694.E3
  • Jeong, H., Then, F., Melia, T.J., Mazzulli, J.R., Cui, L., Savas, J.N., … Krainc, D. (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1), 60–72. doi:10.1016/j.cell.2009.03.018
  • Jiang, Y.-M., Yamamoto, M., Kobayashi, Y., Yoshihara, T., Liang, Y., Terao, S., … Sobue, G. (2005). Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Annals of Neurology, 57(2), 236–251. doi:10.1002/ana.20379
  • Jiang, Y.-M., Yamamoto, M., Tanaka, F., Ishigaki, S., Katsuno, M., Adachi, H., … Sobue, G. (2007). Gene expressions specifically detected in motor neurons (dynactin 1, early growth response 3, acetyl-CoA transporter, death receptor 5, and cyclin C) differentially correlate to pathologic markers in sporadic amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 66(7), 617–627. doi:10.1097/nen.0b013e318093ece3
  • Joyce, P.I., Mcgoldrick, P., Saccon, R.A., Weber, W., Fratta, P., West, S.J., … Acevedo-Arozena, A. (2015). A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Human Molecular Genetics, 24(7), 1883–1897. doi:10.1093/hmg/ddu605
  • Kagan, B.L., Jang, H., Capone, R., Teran Arce, F., Ramachandran, S., Lal, R., & Nussinov, R. (2012). Antimicrobial properties of amyloid peptides. Molecular Pharmaceutics, 9(4), 708–717. doi:10.1021/mp200419b
  • Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., … Ahringer, J. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421(6920), 231–237. doi:10.1038/nature01278
  • Kang, J., Lemaire, H.G., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K.H., … Müller-Hill, B. (1987). The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature, 325(6106), 733–736. doi:10.1038/325733a0
  • Karran, E., & De Strooper, B. (2016). The amyloid cascade hypothesis: Are we poised for success or failure? Journal of Neurochemistry, 139, 237–252. doi:10.1111/jnc.13632
  • Kaur, S.J., McKeown, S.R., & Rashid, S. (2016). Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene, 577(2), 109–118. doi:10.1016/j.gene.2015.11.049
  • Kidd, M. (1964). Alzheimer’s disease-an electron microscopical study. Brain: a Journal of Neurology, 87, 307–320. doi:10.1093/brain/87.2.307
  • Kim, W., Underwood, R.S., Greenwald, I., & Shaye, D.D. (2018). Ortholist 2: A new comparative genomic analysis of human and Caenorhabditis elegans genes. Genetics, 210(2), 445–461. doi:10.1534/genetics.118.301307
  • Koushika, S.P., Schaefer, A.M., Vincent, R., Willis, J.H., Bowerman, B., & Nonet, M.L. (2004). Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(16), 3907–3916. doi:10.1523/JNEUROSCI.5039-03.2004
  • Kraemer, B.C., & Schellenberg, G.D. (2007). SUT-1 enables tau-induced neurotoxicity in C. elegans. Human Molecular Genetics, 16(16), 1959–1971. doi:10.1093/hmg/ddm143
  • Kraemer, B.C., Zhang, B., Leverenz, J.B., Thomas, J.H., Trojanowski, J.Q., & Schellenberg, G.D. (2003). Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America, 100(17), 9980–9985. doi:10.1073/pnas.1533448100
  • Kumar, A., Kumar, V., Singh, K., Kumar, S., Kim, Y.-S., Lee, Y.-M., & Kim, J.-J. (2020). Therapeutic advances for Huntington’s disease. Brain Sciences, 10(1), 43. doi:10.3390/brainsci10010043
  • Kuwahara, T., Koyama, A., Gengyo-Ando, K., Masuda, M., Kowa, H., Tsunoda, M., … Iwatsubo, T. (2006). Familial Parkinson mutant alpha-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. The Journal of Biological Chemistry, 281(1), 334–340. doi:10.1074/jbc.M504860200
  • Kuwahara, T., Koyama, A., Koyama, S., Yoshina, S., Ren, C.-H., Kato, T., … Iwatsubo, T. (2008). A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Human Molecular Genetics, 17(19), 2997–3009. doi:10.1093/hmg/ddn198
  • Kwiatkowski, T.J., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., … Brown, R.H. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 323(5918), 1205–1208. doi:10.1126/science.1166066
  • Lakso, M., Vartiainen, S., Moilanen, A.-M., Sirviö, J., Thomas, J.H., Nass, R., … Wong, G. (2003). Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. Journal of Neurochemistry, 86(1), 165–172. doi:10.1046/j.1471-4159.2003.01809.x
  • Lee, J-y., Song, J., Kwon, K., Jang, S., Kim, C., Baek, K., … Park, C. (2012). Human DJ-1 and its homologs are novel glyoxalases. Human Molecular Genetics, 21(14), 3215–3225. doi:10.1093/hmg/dds155
  • Levitan, D., Doyle, T.G., Brousseau, D., Lee, M.K., Thinakaran, G., Slunt, H.H., … Greenwald, I. (1996). Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14940–14944. doi:10.1073/pnas.93.25.14940
  • Levitan, D., & Greenwald, I. (1995). Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature, 377(6547), 351–354. doi:10.1038/377351a0
  • Liachko, N.F., Guthrie, C.R., & Kraemer, B.C. (2010). Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(48), 16208–16219. doi:10.1523/JNEUROSCI.2911-10.2010
  • Ling, S.C., Polymenidou, M., & Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron, 79(3), 416–438. doi:10.1016/j.neuron.2013.07.033
  • Link, C.D. (1995). Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9368–9372. doi:10.1073/pnas.92.20.9368
  • Link, C.D., Taft, A., Kapulkin, V., Duke, K., Kim, S., Fei, Q., … Sahagan, B.G. (2003). Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiology of Aging, 24(3), 397–413. doi:10.1016/S0197-4580(02)00224-5
  • Liu, Z., Hamamichi, S., Lee, B.D., Yang, D., Ray, A., Caldwell, G.A., … Dawson, V.L. (2011). Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson’s disease models. Human Molecular Genetics, 20(20), 3933–3942. doi:10.1093/hmg/ddr312
  • Lloret, A., Badia, M.-C., Giraldo, E., Ermak, G., Alonso, M.-D., Pallardó, F.V., … Viña, J. (2011). Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer’s disease. Journal of Alzheimer’s Disease, 27(4), 701–709. doi:10.3233/JAD-2011-110890
  • Maloney, B., & Lahiri, D.K. (2011). The Alzheimer’s amyloid β-peptide (Aβ) binds a specific DNA Aβ-interacting domain (AβID) in the APP, BACE1, and APOE promoters in a sequence-specific manner: Characterizing a new regulatory motif. Gene, 488(1–2), 1–12. doi:10.1016/j.gene.2011.06.004
  • Martinez, B.A., Caldwell, K.A., & Caldwell, G.A. (2017). C. elegans as a model system to accelerate discovery for Parkinson disease. Current Opinion in Genetics & Development, 44, 102–109. doi:10.1016/j.gde.2017.02.011
  • Martinez, B.A., Petersen, D.A., Gaeta, A.L., Stanley, S.P., Caldwell, G.A., & Caldwell, K.A. (2017). Dysregulation of the mitochondrial unfolded protein response induces non-apoptotic dopaminergic neurodegeneration in C. elegans models of Parkinson’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(46), 11085–11100. doi:10.1523/JNEUROSCI.1294-17.2017
  • Martinez, M.A.Q., Kinney, B.A., Medwig-Kinney, T.N., Ashley, G., Ragle, J.M., Johnson, L., … Matus, D.Q. (2020). Rapid degradation of Caenorhabditis elegans proteins at single-cell resolution with a synthetic auxin. G3, 10(1), 267–280. doi:10.1534/g3.119.400781
  • Mattson, M.P., & Magnus, T. (2006). Ageing and neuronal vulnerability. Nature Reviews. Neuroscience, 7(4), 278–294. doi:10.1038/nrn1886
  • McColl, G., Roberts, B.R., Gunn, A.P., Perez, K.A., Tew, D.J., Masters, C.L., … Bush, A.I. (2009). The Caenorhabditis elegans A beta 1-42 model of Alzheimer disease predominantly expresses A beta 3-42. The Journal of Biological Chemistry, 284(34), 22697–22702. doi:10.1074/jbc.C109.028514
  • McDermott, J.B., Aamodt, S., & Aamodt, E. (1996). ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins. Biochemistry, 35(29), 9415–9423.
  • McDiarmid, T.A., Au, V., Loewen, A., Liang, J.J.H., Mizumoto, K., Moerman, D.G., & Rankin, C.H. (2018). CRISPR-Cas9 human gene replacement and phenomic characterization in Caenorhabditis elegans to understand the functional conservation of human genes and decipher variants of uncertain significance. Disease Models and Mechanisms, 11, 1–15. 10.1101/369249
  • Mejzini, R., Flynn, L.L., Pitout, I.L., Fletcher, S., Wilton, S.D., & Akkari, P.A. (2019). ALS genetics, mechanisms, and therapeutics: Where are we now? Frontiers in Neuroscience, 13, 1310–1327. doi:10.3389/fnins.2019.01310
  • Morley, J.F., Brignull, H.R., Weyers, J.J., & Morimoto, R.I. (2002). The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 99(16), 10417–10422. doi:10.1073/pnas.152161099
  • Murakami, T., Yang, S.-P., Xie, L., Kawano, T., Fu, D., Mukai, A., … St George-Hyslop, P. (2012). ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Human Molecular Genetics, 21(1), 1–9. doi:10.1093/hmg/ddr417
  • Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., … Singleton, A.B. (2014). Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nature Genetics, 46(9), 989–993. doi:10.1038/ng.3043
  • Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., … Lee, V.M.-Y. (2006). Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–133. doi:10.1126/science.1134108
  • Nollen, E.A.A., Garcia, S.M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R.I., & Plasterk, R.H.A. (2004). Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6403–6408. doi:10.1073/pnas.0307697101
  • Oeda, T., Shimohama, S., Kitagawa, N., Kohno, R., Imura, T., Shibasaki, H., & Ishii, N. (2001). Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Human Molecular Genetics, 10(19), 2013–2023. doi:10.1093/hmg/10.19.2013
  • Oliveira, J.M., Henriques, A.G., Martins, F., Rebelo, S., & da Cruz e Silva, O.A.B. (2015). Amyloid-β modulates both AβPP and tau phosphorylation. Journal of Alzheimer’s Disease, 45(2), 495–507. doi:10.3233/JAD-142664
  • Paisán-Ruíz, C., Jain, S., Evans, E.W., Gilks, W.P., Simón, J., van der Brug, M., … Singleton, A.B. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44(4), 595–600. doi:10.1016/j.neuron.2004.10.023
  • Parker, J.A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., & Néri, C. (2005). Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nature Genetics, 37(4), 349–350. doi:10.1038/ng1534
  • Parker, J.A., Connolly, J.B., Wellington, C., Hayden, M., Dausset, J., & Neri, C. (2001). Expanded polyglutamines in Caenorhabditis elegans cause axonal abnormalities and severe dysfunction of PLM mechanosensory neurons without cell death. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13318–13323. doi:10.1073/pnas.231476398
  • Parker, J.A., Metzler, M., Georgiou, J., Mage, M., Roder, J.C., Rose, A.M., … Néri, C. (2007). Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects Caenorhabditis elegans neurons against mutant polyglutamine toxicity. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(41), 11056–11064. doi:10.1523/JNEUROSCI.1941-07.2007
  • Puls, I., Jonnakuty, C., LaMonte, B.H., Holzbaur, E.L.F., Tokito, M., Mann, E., … Fischbeck, K.H. (2003). Mutant dynactin in motor neuron disease. Nature Genetics, 33(4), 455–456. doi:10.1038/ng1123
  • Ramirez, A., Heimbach, A., Gründemann, J., Stiller, B., Hampshire, D., Cid, L.P., … Kubisch, C. (2006). Hereditary Parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nature Genetics, 38(10), 1184–1191. doi:10.1038/ng1884
  • Ramonet, D., Podhajska, A., Stafa, K., Sonnay, S., Trancikova, A., Tsika, E., … Moore, D.J. (2012). PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Human Molecular Genetics, 21(8), 1725–1743. doi:10.1093/hmg/ddr606
  • Reiner, A., Dragatsis, I., & Dietrich, P. (2011). Genetics and neuropathology of Huntington’s disease. International Review of Neurobiology, 98, 325–372. doi:10.1016/B978-0-12-381328-2.00014-6
  • Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., … Traynor, B.J. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron, 72(2), 257–268. doi:10.1016/j.neuron.2011.09.010
  • Rha, J., Jones, S.K., Fidler, J., Banerjee, A., Leung, S.W., Morris, K.J., … Corbett, A.H. (2017). The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice. Human Molecular Genetics, 26(19), 3663–3681. doi:10.1093/hmg/ddx248
  • Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., … Deng, H.X. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362(6415), 59–62. doi:10.1038/362059a0
  • Rudich, P., Snoznik, C., Watkins, S.C., Monaghan, J., Pandey, U.B., & Lamitina, S.T. (2017). Nuclear localized C9orf72-associated arginine-containing dipeptides exhibit age-dependent toxicity in C. elegans. Human Molecular Genetics, 26(24), 4916–4928. doi:10.1093/hmg/ddx372
  • Saha, S., Guillily, M.D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., … Wolozin, B. (2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(29), 9210–9218. doi:10.1523/JNEUROSCI.2281-09.2009
  • Şahin, A., Held, A., Bredvik, K., Major, P., Achilli, T.-M., Kerson, A.G., … Reenan, R. (2017). Human SOD1 ALS mutations in a Drosophila knock-in model cause severe phenotypes and reveal dosage-sensitive gain- and loss-of-function components. Genetics, 205(2), 707–723. doi:10.1534/genetics.116.190850
  • Sakaguchi-Nakashima, A., Meir, J.Y., Jin, Y., Matsumoto, K., & Hisamoto, N. (2007). LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Current Biology, 17(7), 592–598. doi:10.1016/j.cub.2007.01.074
  • Sämann J., Hegermann J., von Gromoff E., Eimer S., Baumeister R. & Schmidt E. (2009) Caenorhabditis elegans LRK-1 and PINK-1 Act Antagonistically in Stress Response and Neurite Outgrowth. Journal of Biological Chemistry, 284(24), 16482–16491.
  • Sarasija, S., Laboy, J.T., Ashkavand, Z., Bonner, J., Tang, Y., & Norman, K.R. (2018). Presenilin mutations deregulate mitochondrial Ca2+ homeostasis and metabolic activity causing neurodegeneration in Caenorhabditis elegans. eLife, 7, 1–30. doi:10.7554/eLife.33052
  • Sarasija, S., & Norman, K.R. (2015). A γ-Secretase independent role for presenilin in calcium homeostasis impacts mitochondrial function and morphology in Caenorhabditis elegans. Genetics, 201(4), 1453–1466. doi:10.1534/genetics.115.182808
  • Satyal, S.H., Schmidt, E., Kitagawa, K., Sondheimer, N., Lindquist, S., Kramer, J.M., & Morimoto, R.I. (2000). Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 5750–5755. doi:10.1073/pnas.100107297
  • Saudou, F., & Humbert, S. (2016). The biology of huntingtin. Neuron, 89(5), 910–926. doi:10.1016/j.neuron.2016.02.003
  • Sawa, A., Tomoda, T., & Bae, B.-I. (2003). Mechanisms of neuronal cell death in Huntington’s disease. Cytogenetic and Genome Research, 100(1–4), 287–295. doi:10.1159/000072864
  • Selkoe, D.J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595–608. doi:10.15252/emmm.201606210
  • Springer, W., Hoppe, T., Schmidt, E., & Baumeister, R. (2005). A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Human Molecular Genetics, 14(22), 3407–3423. doi:10.1093/hmg/ddi371
  • Sulston, J.E., & Horvitz, H.R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56(1), 110–156. doi:10.1016/0012-1606(77)90158-0
  • Sulston, J.E., Schierenberg, E., White, J.G., & Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100(1), 64–119. doi:10.1016/0012-1606(83)90201-4
  • Tabaton, M., Zhu, X., Perry, G., Smith, M.A., & Giliberto, L. (2010). Signaling effect of amyloid-beta(42) on the processing of AbetaPP. Experimental Neurology, 221(1), 18–25. doi:10.1016/j.expneurol.2009.09.002
  • Tafuri, F., Ronchi, D., Magri, F., Comi, G.P., & Corti, S. (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Frontiers in Cellular Neuroscience, 9, 336–312. doi:10.3389/fncel.2015.00336
  • Takashima, A., Noguchi, K., Michel, G., Mercken, M., Hoshi, M., Ishiguro, K., & Imahori, K. (1996). Exposure of rat hippocampal neurons to amyloid β peptide (25–35) induces the inactivation of phosphatidyl inositol-3 kinase and the activation of tau protein kinase I/glycogen synthase kinase-3β. Neuroscience Letters, 203(1), 33–36. doi:10.1016/0304-3940(95)12257-5
  • Teo, E., Ravi, S., Barardo, D., Kim, H.-S., Fong, S., Cazenave-Gassiot, A., … Gruber, J. (2019). Metabolic stress is a primary pathogenic event in transgenic Caenorhabditis elegans expressing pan-neuronal human amyloid beta. eLife, 8, 1–25. doi:10.7554/eLife.50069
  • The C. elegans Sequencing Consortium. (1998). Genome sequence of the nematode C. elegans: A platform for investigating biology. Science, 282(5396), 2012–2018. 10.1126/science.282.5396.2012
  • Therrien, M., & Parker, J.A. (2014). Worming forward: Amyotrophic lateral sclerosis toxicity mechanisms and genetic interactions in Caenorhabditis elegans. Frontiers in Genetics, 5, 85. doi:10.3389/fgene.2014.00085
  • Therrien, M., Rouleau, G.A., Dion, P.A., & Parker, J.A. (2013). Deletion of C9ORF72 results in motor neuron degeneration and stress sensitivity in C. elegans. PLoS One, 8(12), e83450. doi:10.1371/journal.pone.0083450
  • Timmons, L., Tabara, H., Mello, C.C., & Fire, A.Z. (2003). Inducible systemic RNA silencing in Caenorhabditis elegans. Molecular Biology of the Cell, 14(7), 2972–2983. doi:10.1091/mbc.e03-01-0858
  • Turner, M.R., Hardiman, O., Benatar, M., Brooks, B.R., Chio, A., de Carvalho, M., … Kiernan, M.C. (2013). Controversies and priorities in amyotrophic lateral sclerosis. The Lancet Neurology, 12(3), 310–322. doi:10.1016/S1474-4422(13)70036-X
  • Vaccaro, A., Patten, S.A., Aggad, D., Julien, C., Maios, C., Kabashi, E., … Parker, J.A. (2013). Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiology of Disease, 55, 64–75. doi:10.1016/j.nbd.2013.03.015
  • Vaccaro, A., Tauffenberger, A., Aggad, D., Rouleau, G., Drapeau, P., & Parker, J.A. (2012). Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS One, 7(2), e31321. doi:10.1371/journal.pone.0031321
  • Vaccaro, A., Tauffenberger, A., Ash, P.E.A., Carlomagno, Y., Petrucelli, L., & Parker, J.A. (2012). TDP-1/TDP-43 regulates stress signaling and age-dependent proteotoxicity in Caenorhabditis elegans. PLoS Genetics, 8(7), e1002806. doi:10.1371/journal.pgen.1002806
  • Vérièpe, J., Fossouo, L., & Parker, J.A. (2015). Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons. Nature Communications, 6. doi:10.1038/ncomms8319
  • Wallings, R., Manzoni, C., & Bandopadhyay, R. (2015). Cellular processes associated with LRRK2 function and dysfunction. The FEBS Journal, 282(15), 2806–2826. doi:10.1111/febs.13305
  • Wang, C., Saar, V., Leung, K.L., Chen, L., & Wong, G. (2018). Human amyloid β peptide and tau co-expression impairs behavior and causes specific gene expression changes in Caenorhabditis elegans. Neurobiology of Disease, 109, 88–101. doi:10.1016/j.nbd.2017.10.003
  • Wang, J., Farr, G.W., Hall, D.H., Li, F., Furtak, K., Dreier, L., & Horwich, A.L. (2009). An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genetics, 5(1), e1000350. doi:10.1371/journal.pgen.1000350
  • Wang, S., Tang, N.H., Lara-Gonzalez, P., Zhao, Z., Cheerambathur, D.K., Prevo, B., … Oegema, K. (2017). A toolkit for GFP-mediated tissue-specific protein degradation in C. elegans. Development, 144(14), 2694–2701. doi:10.1242/dev.150094
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340. doi:10.1098/rstb.1986.0056
  • Wiese M., Antebi A., Zheng H. (2010). Intracellular Trafficking and Synaptic Function of APL-1 in Caenorhabditis elegans. PLoS One, 5(9), e12790.
  • Williamson, T.L., & Cleveland, D.W. (1999). Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature Neuroscience, 2(1), 50–56. doi:10.1038/4553
  • Wils, H., Kleinberger, G., Janssens, J., Pereson, S., Joris, G., Cuijt, I., … Kumar-Singh, S. (2010). TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3858–3863. doi:10.1073/pnas.0912417107
  • Xia, Q., Wang, H., Hao, Z., Fu, C., Hu, Q., Gao, F., … Wang, G. (2016). TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. The EMBO Journal, 35(2), 121–142. doi:10.15252/embj.201591998
  • Xu, Y.-F., Gendron, T.F., Zhang, Y.-J., Lin, W.-L., D’Alton, S., Sheng, H., … Petrucelli, L. (2010). Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(32), 10851–10859. doi:10.1523/JNEUROSCI.1630-10.2010
  • Yanase, S., Onodera, A., Tedesco, P., Johnson, T.E., & Ishii, N. (2009). SOD-1 deletions in Caenorhabditis elegans alter the localization of intracellular reactive oxygen species and show molecular compensation. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(5), 530–539. doi:10.1093/gerona/glp020
  • Yao, C., Johnson, W.M., Gao, Y., Wang, W., Zhang, J., Deak, M., … Chen, S.G. (2013). Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity. Human Molecular Genetics, 22(2), 328–344. doi:10.1093/hmg/dds431
  • Yim, M.B., Kang, J.H., Yim, H.S., Kwak, H.S., Chock, P.B., & Stadtman, E.R. (1996). A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America, 93(12), 5709–5714. doi:10.1073/pnas.93.12.5709
  • Zhang, L., Ward, J.D., Cheng, Z., & Dernburg, A.F. (2015). The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans. Development, 142(24), 4374–4384. doi:10.1242/dev.129635
  • Zhang, S., Cai, F., Wu, Y., Bozorgmehr, T., Wang, Z., Zhang, S., … Song, W. (2020). A presenilin-1 mutation causes Alzheimer disease without affecting Notch signaling. Molecular Psychiatry, 25 (3), 603–611. doi:10.1038/s41380-018-0101-x
  • Zhang, T., Hwang, H.-Y., Hao, H., Talbot, C., & Wang, J. (2012). Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. The Journal of Biological Chemistry, 287(11), 8371–8382. doi:10.1074/jbc.M111.311977
  • Zhang, T., Mullane, P.C., Periz, G., & Wang, J. (2011). TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Human Molecular Genetics, 20(10), 1952–1965. doi:10.1093/hmg/ddr076
  • Zheng, J., Winderickx, J., Franssens, V., & Liu, B. (2018). A mitochondria-associated oxidative stress perspective on Huntington’s disease. Frontiers in Molecular Neuroscience, 11, 329–310. doi:10.3389/fnmol.2018.00329
  • Zou, K., Gong, J.S., Yanagisawa, K., & Michikawa, M. (2002). A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(12), 4833–4841. doi:10.1523/JNEUROSCI.22-12-04833.2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.