2,875
Views
16
CrossRef citations to date
0
Altmetric
Section 3: From inputs to outputs

C. elegans aversive olfactory learning generates diverse intergenerational effects

, , &
Pages 378-388 | Received 23 May 2020, Accepted 01 Sep 2020, Published online: 17 Sep 2020

References

  • Ashe, A., Sapetschnig, A., Weick, E.M., Mitchell, J., Bagijn, M.P., Cording, A.C., … Miska, E.A. (2012). PiRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans. Cell, 150(1), 88–99. doi:10.1016/j.cell.2012.06.018
  • Batista, P.J., Ruby, J.G., Claycomb, J.M., Chiang, R., Fahlgren, N., Kasschau, K.D., … Mello, C.C. (2008). PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans. Molecular Cell, 31(1), 67–78. doi:10.1016/j.molcel.2008.06.002
  • Belicard, T., Jareosettasin, P., & Sarkies, P. (2018). The piRNA pathway responds to environmental signals to establish intergenerational adaptation to stress. BMC Biology, 16(1), 1–14. doi:10.1186/s12915-018-0571-y
  • Bohacek, J., & Mansuy, I.M. (2015). Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nature Reviews. Genetics, 16(11), 641–652. doi:10.1038/nrg3964
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
  • Buckley, B.A., Burkhart, K.B., Gu, S.G., Spracklin, G., Kershner, A., Fritz, H., … Kennedy, S. (2012). A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature, 489(7416), 447–451. doi:10.1038/nature11352
  • Cox, D.N., Chao, A., Baker, J., Chang, L., Qiao, D., & Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes & Development, 12(23), 3715–3727. doi:10.1101/gad.12.23.3715
  • Das, P.P., Bagijn, M.P., Goldstein, L.D., Woolford, J.R., Lehrbach, N.J., Sapetschnig, A., … Miska, E.A. (2008). Piwi and piRNAs Act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Molecular Cell, 31(1), 79–90. doi:10.1016/j.molcel.2008.06.003
  • Deas, J.B., Blondel, L., & Extavour, C.G. (2019). Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proceedings of the Royal Society B: Biological Sciences, 286(1897), 20182778. doi:10.1098/rspb.2018.2778
  • Dias, B.G., Maddox, S.A., Klengel, T., & Ressler, K.J. (2015). Epigenetic mechanisms underlying learning and the inheritance of learned behaviors. Trends in Neurosciences, 38(2), 96–107. doi:10.1016/j.tins.2014.12.003
  • Dias, B.G., & Ressler, K.J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience, 17(1), 89–96. doi:10.1038/nn.3594
  • Félix, M.A., & Duveau, F. (2012). Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae. BMC Biology, 10(1), 59. doi:10.1186/1741-7007-10-59
  • Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., & Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391 (6669), 806–811. doi:10.1038/35888
  • Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., … Mansuy, I.M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nature Neuroscience, 17(5), 667–669. doi:10.1038/nn.3695
  • Garcia, J., Hankins, W.G., & Rusiniak, K.W. (1974). Behavioral regulation of the milieu interne in man and rat. Science (New York, N.Y.), 185(4154), 824–831. doi:10.1126/science.185.4154.824
  • Gent, J.I., Lamm, A.T., Pavelec, D.M., Maniar, J.M., Parameswaran, P., Tao, L., … Fire, A.Z. (2010). Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans Soma. Molecular Cell, 37(5), 679–689. doi:10.1016/j.molcel.2010.01.012
  • Ha, H. i., Hendricks, M., Shen, Y., Gabel, C.V., Fang-Yen, C., Qin, Y., … Zhang, Y. (2010). Functional organization of a neural network for aversive olfactory learning in Caenorhabditis elegans. Neuron, 68(6), 1173–1186. doi:10.1016/j.neuron.2010.11.025
  • Han, T., Manoharan, A.P., Harkins, T.T., Bouffard, P., Fitzpatrick, C., Chu, D.S., … Kim, J.K. (2009). 26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proceedings of the National Academy of Sciences USA, 106(44), 18674–18676. doi:10.1073/pnas.0906378106
  • Hashimshony, T., Feder, M., Levin, M., Hall, B.K., & Yanai, I. (2015). Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature, 519(7542), 219–222. doi:10.1038/nature13996
  • Hepper, P.G., Wells, D.L., Dornan, J.C., & Lynch, C. (2013). Long-term flavor recognition in humans with prenatal garlic experience. Developmental Psychobiology, 55(5), 568–574. doi:10.1002/dev.21059
  • Hall, D.H., Herndon, L.A., & Altun, Z. (2017). Introduction to C.elegans embryo anatomy. In Worm Atlas. doi:10.3908/wormatlas.4.1
  • Horsthemke, B. (2018). A critical view on transgenerational epigenetic inheritance in humans. Nature Communications, 9(1):2973. doi:10.1038/s41467-018-05445-5
  • Juang, B.-T., Gu, C., Starnes, L., Palladino, F., Goga, A., Kennedy, S., & L'Etoile, N.D. (2013). Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell, 154(5), 1010–1022. doi:10.1016/j.cell.2013.08.006
  • Kaletsky, R., Moore, R.S., Parsons, L.L., & Murphy, C.T. (2019). Cross-kingdom recognition of bacterial small RNAs induces transgenerational pathogenic avoidance. biorXiv preprint. doi:10.1101/697888
  • Kasper, D.M., Gardner, K.E., & Reinke, V. (2014). Homeland security in the C. elegans germ line: Insights into the biogenesis and function of pirnas. Epigenetics, 9(1), 62–74. doi:10.4161/epi.26647
  • Kundakovic, M., Gudsnuk, K., Franks, B., Madrid, J., Miller, R.L., Perera, F.P., & Champagne, F.A. (2013). Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol a exposure. Proceedings of the National Academy of Sciences of the United States of America, 110(24), 9956–9961. doi:10.1073/pnas.1214056110
  • Lee, H.C., Gu, W., Shirayama, M., Youngman, E., Conte, D., & Mello, C.C. (2012). C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts. Cell, 150(1), 78–87. doi:10.1016/j.cell.2012.06.016
  • Lee, R.C., Hammell, C.M., & Ambros, V. (2006). Interacting endogenous and exogenous RNAi pathways in Caenorhabditis elegans. RNA (New York, N.Y.), 12(4), 589–597. doi:10.1261/rna.2231506
  • Liu, H., Yang, W., Wu, T., Duan, F., Soucy, E., Jin, X., & Zhang, Y. (2018). Cholinergic sensorimotor integration regulates olfactory steering. Neuron, 97(2), 390–405.e3. doi:10.1016/j.neuron.2017.12.003
  • Mello, C.C., & Conte, D.J.. (2004). Revealing the world of RNA interference. Nature, 431(7006), 338–342. doi:10.1038/nature02872
  • Miska, E.A., & Ferguson-Smith, A.C. (2016). Transgenerational inheritance: Models and mechanisms of non – DNA sequence – based inheritance. Science (New York, N.Y.), 354(6308), 59–782. doi:10.1126/science.aaf4945
  • Moore, R.S., Kaletsky, R., & Murphy, C.T. (2019). Piwi/PRG-1 argonaute and TGF-β mediate transgenerational learned pathogenic avoidance. Cell, 177(7), 1827–1841. doi:10.1016/j.cell.2019.05.024
  • Ni, J.Z., Kalinava, N., Chen, E., Huang, A., Trinh, T., & Gu, S.G. (2016). A transgenerational role of the germline nuclear RNAi pathway in repressing heat stress-induced transcriptional activation in C. elegans. Epigenetics & Chromatin, 9(1), 3–15. doi:10.1186/s13072-016-0052-x
  • Okamura, K., & Lai, E.C. (2008). Endogenous small interfering RNAs in animals. Nature Reviews Molecular Cell Biology, 9(9), 673–678. doi:10.1038/nrm2479
  • Öst, A., Lempradl, A., Casas, E., Weigert, M., Tiko, T., Deniz, M., … Pospisilik, J.A. (2014). Paternal diet defines offspring chromatin state and intergenerational obesity. Cell, 159(6), 1352–1364. doi:10.1016/j.cell.2014.11.005
  • Palominos, M.F., Verdugo, L., Gabaldon, C., Pollak, B., Ortíz-Severín, J., Varas, M.A., … Calixto, A. (2017). Transgenerational diapause as an avoidance strategy against bacterial pathogens in Caenorhabditis elegans. mBio, 8(5), 1–18. doi:10.1128/mBio.01234-17
  • Pavelec, D.M., Lachowiec, J., Duchaine, T.F., Smith, H.E., & Kennedy, S. (2009). Requirement for the ERI/DICER complex in endogenous RNA interference and sperm development in Caenorhabditis elegans. Genetics, 183(4), 1283–1295. doi:10.1534/genetics.109.108134
  • Posner, R., Toker, I.A., Antonova, O., Star, E., Anava, S., Azmon, E., … Rechavi, O. (2019). Neuronal small RNAs control behavior transgenerationally. Cell, 177(7), 1814–1826.e15. doi:10.1016/j.cell.2019.04.029
  • Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W.S.S., Kerk, S.Y., Hannon, G.J., & Hobert, O. (2014). Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell, 158(2), 277–287. doi:10.1016/j.cell.2014.06.020
  • Remy, J. (2010). Stable inheritance of an acquired behavior in Caenorhabditis elegans. Current Biology : CB, 20(20), R877–R875. https://doi.org/10.1016/j.cub.2010.08.013.Acknowledgements. doi:10.1016/j.cub.2010.08.013
  • Samuel, B.S., Rowedder, H., Braendle, C., Félix, M.A., & Ruvkun, G. (2016). Caenorhabditis elegans responses to bacteria from its natural habitats. Proceedings of the National Academy of Sciences of the United States of America, 113(27), E3941–E3949. doi:10.1073/pnas.1607183113
  • Schott, D., Yanai, I., & Hunter, C.P. (2014). Natural RNA interference directs a heritable response to the environment. Scientific Reports, 4, 7387. doi:10.1038/srep07387
  • Simmer, F., Tijsterman, M., Parrish, S., Koushika, S.P., Nonet, M.L., Fire, A., … Plasterk, R.H.A. (2002). Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. Elegans hypersensitive to RNAi. Current Biology : CB, 12(15), 1317–1319. doi:10.1016/S0960-9822(02)01041-2
  • Sims, J.R., Ow, M.C., Nishiguchi, M.A., Kim, K., Sengupta, P., & Hall, S.E. (2016). Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways. eLife, 5, 1–26. doi:10.7554/eLife.11642
  • Singh, J., & Aballay, A. (2019). Microbial colonization activates an immune fight-and-flight response via neuroendocrine signaling. Developmental Cell, 49(1), 89–99.e4. doi:10.1016/j.devcel.2019.02.001
  • Tan, M.W., Mahajan-Miklos, S., & Ausubel, F.M. (1999). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 96(2), 715–720. doi:10.1073/pnas.96.2.715
  • Todrank, J., Heth, G., & Restrepo, D. (2011). Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences. Proceedings. Biological Sciences, 278(1714), 1949–1955. doi:10.1098/rspb.2010.2314
  • Troemel, E.R., Chu, S.W., Reinke, V., Lee, S.S., Ausubel, F.M., & Kim, D.H. (2006). p38 MAPK regulates expression of immune response genes and contributes to longevity in C. elegans. PLoS Genetics, 2(11), e183. doi:10.1371/journal.pgen.0020183
  • Vastenhouw, N., Brunschwig, K., Okihara, K.L., Muller, F., Tijsterman, M., & Plasterk, R.H.A. (2006). Long-term gene silencing by RNAi. Nature, 442(7105), 882. doi:10.1038/442882a
  • Wang, G., & Reinke, V. (2008). A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Current Biology : CB, 18(12), 861–867. doi:10.1016/j.cub.2008.05.009
  • Weick, E.M., & Miska, E.A. (2014). piRNAs: From biogenesis to function. Development (Cambridge, England), 141(18), 3458–3471. doi:10.1242/dev.094037
  • Weigel, D., & Colot, V. (2012). Epialleles in plant evolution. Genome Biology, 13(10), 249–246. doi:10.1186/gb-2012-13-10-249
  • Zhang, Y., Lu, H., & Bargmann, C.I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438(7065), 179–184. doi:10.1038/nature04216