1,401
Views
7
CrossRef citations to date
0
Altmetric
Section 2: Nervous system development

Molecular mechanisms governing axonal transport: a C. elegans perspective

&
Pages 282-297 | Received 12 Feb 2020, Accepted 10 Sep 2020, Published online: 08 Oct 2020

References

  • Aguirre-Chen, C., Bulow, H.E., & Kaprielian, Z. (2011). C. elegans bicd-1, homolog of the Drosophila dynein accessory factor Bicaudal D, regulates the branching of PVD sensory neuron dendrites. Development (Cambridge, England)), 138(3), 507–518. doi:10.1242/dev.060939
  • Aizawa, H., Sekine, Y., Takemura, R., Zhang, Z., Nangaku, M., & Hirokawa, N. (1992). Kinesin family in murine central nervous system. The Journal of Cell Biology, 119(5), 1287–1296. doi:10.1083/jcb.119.5.1287
  • Akella, J.S., Wloga, D., Kim, J., Starostina, N.G., Lyons-Abbott, S., Morrissette, N.S., … Gaertig, J. (2010). MEC-17 is an alpha-tubulin acetyltransferase. Nature, 467(7312), 218–222. doi:10.1038/nature09324
  • Al-Bassam, J., Cui, Y., Klopfenstein, D., Carragher, B.O., Vale, R.D., & Milligan, R.A. (2003). Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition. The Journal of Cell Biology, 163(4), 743–753. doi:10.1083/jcb.200308020
  • Allen, P.B., Sgro, A.E., Chao, D.L., Doepker, B.E., Scott Edgar, J., Shen, K., & Chiu, D.T. (2008). Single-synapse ablation and long-term imaging in live C. elegans. Journal of Neuroscience Methods, 173(1), 20–26. doi:10.1016/j.jneumeth.2008.05.007
  • Amos, L. A., & Schlieper, D. (2005). Microtubules and Maps. In J. M. Squire & D. A. D. Parry (Eds.), Advances in Protein Chemistry (Vol. 71, pp. 257–298). Elsevier.
  • Arimoto, M., Koushika, S.P., Choudhary, B.C., Li, C., Matsumoto, K., & Hisamoto, N. (2011). The Caenorhabditis elegans JIP3 protein UNC-16 functions as an adaptor to link kinesin-1 with cytoplasmic dynein. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(6), 2216–2224. doi:10.1523/JNEUROSCI.2653-10.2011
  • Balabanian, L., Berger, C.L., & Hendricks, A.G. (2017). Acetylated microtubules are preferentially bundled leading to enhanced kinesin-1 motility. Biophysical Journal, 113(7), 1551–1560. doi:10.1016/j.bpj.2017.08.009
  • Baran, R., Castelblanco, L., Tang, G., Shapiro, I., Goncharov, A., & Jin, Y. (2010). Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One, 5(3), e9655. doi:10.1371/journal.pone.0009655
  • Beeg, J., Klumpp, S., Dimova, R., Gracià, R.S., Unger, E., & Lipowsky, R. (2008). Transport of beads by several kinesin motors. Biophysical Journal, 94(2), 532–541. doi:10.1529/biophysj.106.097881
  • Bellanger, J.-M., Cueva, J.G., Baran, R., Tang, G., Goodman, M.B., & Debant, A. (2012). The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. Journal of Cell Science, 125(Pt 22), 5417–5427. doi:10.1242/jcs.108381
  • Bhabha, G., Johnson, G.T., Schroeder, C.M., & Vale, R.D. (2016). How dynein moves along microtubules. Trends in Biochemical Sciences, 41(1), 94–105. doi:10.1016/j.tibs.2015.11.004
  • Bhan, P., Muthaiyan Shanmugam, M., Wang, D., Bayansan, O., Chen, C., & Wagner, O.I. (2019). Characterization of TAG‐63 and its role on axonal transport in C. elegans. Traffic, 21(2), 231–249. doi:10.1111/tra.12706
  • Bhat, J.M., & Hutter, H. (2016). Pioneer axon navigation is controlled by AEX-3, a guanine nucleotide exchange factor for RAB-3 in Caenorhabditis elegans. Genetics, 203(3), 1235–1247. doi:10.1534/genetics.115.186064
  • Blasius, T.L., Cai, D., Jih, G.T., Toret, C.P., & Verhey, K.J. (2007). Two binding partners cooperate to activate the molecular motor Kinesin-1. The Journal of Cell Biology, 176(1), 11–17. doi:10.1083/jcb.200605099
  • Bocquet, A., Berges, R., Frank, R., Robert, P., Peterson, A.C., & Eyer, J. (2009). Neurofilaments bind tubulin and modulate its polymerization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(35), 11043–11054. doi:10.1523/JNEUROSCI.1924-09.2009
  • Bounoutas, A., O’Hagan, R., & Chalfie, M. (2009). The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Current Biology, 19(16), 1362–1367. doi:10.1016/j.cub.2009.06.036
  • Brady, S.T., Pfister, K.K., & Bloom, G.S. (1990). A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proceedings of the National Academy of Sciences of the United States of America, 87(3), 1061–1065. doi:10.1073/pnas.87.3.1061
  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77(1), 71–94.
  • Brown, C.L., Maier, K.C., Stauber, T., Ginkel, L.M., Wordeman, L., Vernos, I., & Schroer, T.A. (2005). Kinesin-2 is a motor for late endosomes and lysosomes: kinesin-2 is a late endosome motor. Traffic, 6(12), 1114–1124. doi:10.1111/j.1600-0854.2005.00347.x
  • Butkevich, E., Härtig, W., Nikolov, M., Erck, C., Grosche, J., Urlaub, H., … Chua, J.J.E. (2016). Phosphorylation of FEZ1 by microtubule affinity regulating kinases regulates its function in presynaptic protein trafficking. Scientific Reports, 6(1), 26965. doi:10.1038/srep26965
  • Butler, V.J., Salazar, D.A., Soriano-Castell, D., Alves-Ferreira, M., Dennissen, F.J.A., Vohra, M., … Kao, A.W. (2019). Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Human Molecular Genetics, 28(9), 1498–1514. doi:10.1093/hmg/ddy442
  • Byrd, D.T., Kawasaki, M., Walcoff, M., Hisamoto, N., Matsumoto, K., & Jin, Y. (2001). UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron, 32(5), 787–800. doi:10.1016/S0896-6273(01)00532-3
  • Cai, Q., Gerwin, C., & Sheng, Z.-H. (2005). Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. The Journal of Cell Biology, 170(6), 959–969. doi:10.1083/jcb.200506042
  • Cai, Q., Pan, P.-Y., & Sheng, Z.-H. (2007). Syntabulin-kinesin-1 family member 5B-mediated axonal transport contributes to activity-dependent presynaptic assembly. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(27), 7284–7296. doi:10.1523/JNEUROSCI.0731-07.2007
  • Campenot, R.B., & Eng, H. (2000). Protein synthesis in axons and its possible functions. Journal of Neurocytology, 29 (11–12), 793–798. doi:10.1023/a:1010939307434
  • Caviston, J.P., Ross, J.L., Antony, S.M., Tokito, M., & Holzbaur, E.L.F. (2007). Huntingtin facilitates dynein/dynactin-mediated vesicle transport. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10045–10050. doi:10.1073/pnas.0610628104
  • Chalfie, M., & Thomson, J.N. (1982). Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. The Journal of Cell Biology, 93(1), 15–23. doi:10.1083/jcb.93.1.15
  • Chang, L., & Goldman, R.D. (2004). Intermediate filaments mediate cytoskeletal crosstalk. Nature Reviews. Molecular Cell Biology, 5(8), 601–613. doi:10.1038/nrm1438
  • Chen, C., Peng, Y., Yen, Y., Bhan, P., Muthaiyan Shanmugam, M., Klopfenstein, D.R., & Wagner, O.I. (2019). Insights on UNC-104-dynein/dynactin interactions and their implications on axonal transport in Caenorhabditis elegans. Journal of Neuroscience Research, 97(2), 185–201. doi:10.1002/jnr.24339
  • Chew, Y.L., Fan, X., Gotz, J., & Nicholas, H.R. (2013). PTL-1 regulates neuronal integrity and lifespan in C. elegans. Journal of Cell Science, 126(Pt 9), 2079–2091. doi:10.1242/jcs.jcs124404
  • Chiba, K., Takahashi, H., Chen, M., Obinata, H., Arai, S., Hashimoto, K., … Niwa, S. (2019). Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. Proceedings of the National Academy of Sciences of the United States of America, 116(37), 18429–18434. doi:10.1073/pnas.1905690116
  • Choudhary, B., Kamak, M., Ratnakaran, N., Kumar, J., Awasthi, A., Li, C., … Koushika, S.P. (2017). UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes. PLoS Genetics, 13(11), e1007100. doi:10.1371/journal.pgen.1007100
  • Cho, K., Cai, Y., Yi, H., Yeh, A., Aslanukov, A., & Ferreira, P. A. (2007). Association of the Kinesin-Binding Domain of RanBP2 to KIF5B and KIF5C Determines Mitochondria Localization and Function. Traffic, 8(12), 1722–1735. https://doi.org/10.1111/j.1600-0854.2007.00647.x
  • Chua, J.J.E., Butkevich, E., Worseck, J.M., Kittelmann, M., Gronborg, M., Behrmann, E., … Jahn, R. (2012). Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter. Proceedings of the National Academy of Sciences of the United States of America, 109(15), 5862–5867. doi:10.1073/pnas.1113819109
  • Colin, E., Zala, D., Liot, G., Rangone, H., Borrell-Pagès, M., Li, X.-J., … Humbert, S. (2008). Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. The EMBO Journal, 27(15), 2124–2134. doi:10.1038/emboj.2008.133
  • Cueva, J.G., Hsin, J., Huang, K.C., & Goodman, M.B. (2012). Posttranslational acetylation of α-tubulin constrains protofilament number in native microtubules. Current Biology, 22(12), 1066–1074. doi:10.1016/j.cub.2012.05.012
  • Culotti, J.G., & Russell, R.L. (1978). Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics, 90 (2), 243–256.
  • Dahlstrom, A.B., Pfister, K.K., & Brady, S.T. (1991). The axonal transport motor 'kinesin' is bound to anterogradely transported organelles: quantitative cytofluorimetric studies of fast axonal transport in the rat. Acta Physiologica Scandinavica, 141(4), 469–476. doi:10.1111/j.1748-1716.1991.tb09107.x
  • Dey, S., Banker, G., & Ray, K. (2017). Anterograde transport of Rab4-associated vesicles regulates synapse organization in Drosophila. Cell Reports, 18(10), 2452–2463. doi:10.1016/j.celrep.2017.02.034
  • Dixit, R., Ross, J.L., Goldman, Y.E., & Holzbaur, E.L.F. (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science (New York, N.Y.).), 319(5866), 1086–1089. doi:10.1126/science.1152993
  • Dubey, J., Ratnakaran, N., & Koushika, S.P. (2015). Neurodegeneration and microtubule dynamics: death by a thousand cuts. Frontiers in Cellular Neuroscience, 9, 343. doi:10.3389/fncel.2015.00343
  • Edwards, S.L., Morrison, L.M., Yorks, R.M., Hoover, C.M., Boominathan, S., & Miller, K.G. (2015). UNC-16 (JIP3) acts through synapse-assembly proteins to inhibit the active transport of cell soma organelles to Caenorhabditis elegans motor neuron axons. Genetics, 201(1), 117–141. doi:10.1534/genetics.115.177345
  • Endow, S.A. (1991). The emerging kinesin family of microtubule motor proteins. Trends in Biochemical Sciences, 16 (6), 221–225. doi:10.1016/0968-0004(91)90089-E
  • Fang, Y., Soares, L., Teng, X., Geary, M., & Bonini, N.M. (2012). A novel Drosophila model of nerve injury reveals an essential role of nmnat in maintaining axonal integrity. Current Biology, 22(7), 590–595. doi:10.1016/j.cub.2012.01.065
  • Farías, G.G., Guardia, C.M., De Pace, R., Britt, D.J., & Bonifacino, J.S. (2017). BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proceedings of the National Academy of Sciences of the United States of America, 114(14), E2955–E2964. doi:10.1073/pnas.1616363114
  • Fujita, T., Maturana, A.D., Ikuta, J., Hamada, J., Walchli, S., Suzuki, T., … Kuroda, S. (2007). Axonal guidance protein FEZ1 associates with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochemical and Biophysical Research Communications, 361(3), 605–610. doi:10.1016/j.bbrc.2007.07.050
  • Ganguly, A., Tang, Y., Wang, L., Ladt, K., Loi, J., Dargent, B., … Roy, S. (2015). A dynamic formin-dependent deep F-actin network in axons. The Journal of Cell Biology, 210(3), 401–417. doi:10.1083/jcb.201506110
  • Gauthier, L.R., Charrin, B.C., Borrell-Pagès, M., Dompierre, J.P., Rangone, H., Cordelières, F.P., … Saudou, F. (2004). Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell, 118(1), 127–138. doi:10.1016/j.cell.2004.06.018
  • Gennerich, A., & Vale, R.D. (2009). Walking the walk: how kinesin and dynein coordinate their steps. Current Opinion in Cell Biology, 21(1), 59–67. doi:10.1016/j.ceb.2008.12.002
  • Goodwin, P.R., Sasaki, J.M., & Juo, P. (2012). Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(24), 8158–8172. doi:10.1523/JNEUROSCI.0251-12.2012
  • Goodwin, S.S., & Vale, R.D. (2010). Patronin regulates the microtubule network by protecting microtubule minus ends. Cell, 143(2), 263–274. doi:10.1016/j.cell.2010.09.022
  • Gross, S.P., Vershinin, M., & Shubeita, G.T. (2007). Cargo transport: Two motors are sometimes better than one. Current Biology, 17(12), R478–R486. doi:10.1016/j.cub.2007.04.025
  • Guardia, C.M., Farías, G.G., Jia, R., Pu, J., & Bonifacino, J.S. (2016). BORC functions upstream of kinesins 1 and 3 to coordinate regional movement of lysosomes along different microtubule tracks. Cell Reports, 17(8), 1950–1961. doi:10.1016/j.celrep.2016.10.062
  • Gumy, L.F., Katrukha, E.A., Grigoriev, I., Jaarsma, D., Kapitein, L.C., Akhmanova, A., & Hoogenraad, C.C. (2017). MAP2 defines a pre-axonal filtering zone to regulate KIF1- versus KIF5-dependent cargo transport in sensory neurons. Neuron, 94(2), 347.e7–362.e7. doi:10.1016/j.neuron.2017.03.046
  • Guo, X., Macleod, G.T., Wellington, A., Hu, F., Panchumarthi, S., Schoenfield, M., … Zinsmaier, K.E. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron, 47(3), 379–393. doi:10.1016/j.neuron.2005.06.027
  • Hall, D.H., & Hedgecock, M. (1991). Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 65 (5), 837–847. doi:10.1016/0092-8674(91)90391-B
  • Hammond, J.W., Blasius, T.L., Soppina, V., Cai, D., & Verhey, K.J. (2010). Autoinhibition of the kinesin-2 motor KIF17 via dual intramolecular mechanisms. The Journal of Cell Biology, 189(6), 1013–1025. doi:10.1083/jcb.201001057
  • Hammond, J.W., Cai, D., Blasius, T.L., Li, Z., Jiang, Y., Jih, G.T., … Verhey, K.J. (2009). Mammalian kinesin-3 motors are dimeric in vivo and move by processive motility upon release of autoinhibition. PLoS Biology, 7(3), e1000072. doi:10.1371/journal.pbio.1000072
  • Hammond, J.W., Huang, C.-F., Kaech, S., Jacobson, C., Banker, G., & Verhey, K.J. (2010). Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Molecular Biology of the Cell, 21(4), 572–583. doi:10.1091/mbc.e09-01-0044
  • Han, S.M., Baig, H.S., & Hammarlund, M. (2016). Mitochondria localize to injured axons to support regeneration. Neuron, 92(6), 1308–1323. doi:10.1016/j.neuron.2016.11.025
  • Hancock, W. O. (2018). Mechanics of bidirectional cargo transport. In S. M. King (Ed.), Dyneins: Structure, Biology and Disease (pp. 152–171). Elsevier.
  • He, J., Zhou, R., Wu, Z., Carrasco, M.A., Kurshan, P.T., Farley, J.E., … Zhuang, X. (2016). Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 6029–6034. doi:10.1073/pnas.1605707113
  • Hirokawa, N., & Noda, Y. (2008). Intracellular transport and kinesin superfamily proteins, KIFs: Structure, function, and dynamics. Physiological Reviews, 88(3), 1089–1118. doi:10.1152/physrev.00023.2007
  • Holzbaur, E.L., & Goldman, Y.E. (2010). Coordination of molecular motors: From in vitro assays to intracellular dynamics. Current Opinion in Cell Biology, 22(1), 4–13. doi:10.1016/j.ceb.2009.12.014
  • Hong, N.H., Qi, A., & Weaver, A.M. (2015). PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin-actin interactions. The Journal of Cell Biology, 210(5), 753–769. doi:10.1083/jcb.201412127
  • Horiuchi, D., Collins, C.A., Bhat, P., Barkus, R.V., DiAntonio, A., & Saxton, W.M. (2007). Control of a kinesin-Cargo linkage mechanism by JNK pathway kinases. Current Biology, 17(15), 1313–1317. doi:10.1016/j.cub.2007.06.062
  • Hsu, C.-C., Moncaleano, J.D., & Wagner, O.I. (2011). Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α) in C. elegans neurons. Neuroscience, 176, 39–52. doi:10.1016/j.neuroscience.2010.12.044
  • Hsu, J.-M., Chen, C.-H., Chen, Y.-C., McDonald, K.L., Gurling, M., Lee, A., … Pan, C.-L. (2014). Genetic analysis of a novel tubulin mutation that redirects synaptic vesicle targeting and causes neurite degeneration in C. elegans. PLoS Genetics, 10(11), e1004715. doi:10.1371/journal.pgen.1004715
  • Ikenaka, K., Kawai, K., Katsuno, M., Huang, Z., Jiang, Y.-M., Iguchi, Y., … Sobue, G. (2013). dnc-1/dynactin 1 knockdown disrupts transport of autophagosomes and induces motor neuron degeneration. PLoS One, 8(2), e54511. doi:10.1371/journal.pone.0054511
  • Iwasaki, K., & Toyonaga, R. (2000). The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. The EMBO Journal, 19(17), 4806–4816. doi:10.1093/emboj/19.17.4806
  • Iwasaki, K., Staunton, J., Saifee, O., Nonet, M., & Thomas, J.H. (1997). aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron, 18(4), 613–622. doi:10.1016/S0896-6273(00)80302-5
  • Janke, C., & Chloë Bulinski, J. (2011). Post-translational regulation of the microtubule cytoskeleton: Mechanisms and functions. Nature Reviews Molecular Cell Biology, 12(12), 773–786. doi:10.1038/nrm3227
  • Johansson, M., Rocha, N., Zwart, W., Jordens, I., Janssen, L., Kuijl, C., … Neefjes, J. (2007). Activation of endosomal dynein motors by stepwise assembly of Rab7-RILP-p150Glued, ORP1L, and the receptor betalll spectrin. The Journal of Cell Biology, 176(4), 459–471. doi:10.1083/jcb.200606077
  • Kamal, A., Stokin, G.B., Yang, Z., Xia, C.-H., & Goldstein, L.S.B. (2000). Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron, 28(2), 449–459. doi:10.1016/S0896-6273(00)00124-0
  • Kapitein, L.C., & Hoogenraad, C.C. (2011). Which way to go? Cytoskeletal organization and polarized transport in neurons. Molecular and Cellular Neurosciences, 46(1), 9–20. doi:10.1016/j.mcn.2010.08.015
  • Karasmanis, E.P., Phan, C.-T., Angelis, D., Kesisova, I.A., Hoogenraad, C.C., McKenney, R.J., & Spiliotis, E.T. (2018). Polarity of neuronal membrane traffic requires sorting of kinesin motor cargo during entry into dendrites by a microtubule-associated septin. Developmental Cell, 46(2), 204–218.e7. doi:10.1016/j.devcel.2018.06.013
  • Kevenaar, J.T., Bianchi, S., van Spronsen, M., Olieric, N., Lipka, J., Frias, C.P., … Hoogenraad, C.C. (2016). Kinesin-binding protein controls microtubule dynamics and cargo trafficking by regulating kinesin motor activity. Current Biology, 26(7), 849–861. doi:10.1016/j.cub.2016.01.048
  • Kikkawa, M., Okada, Y., & Hirokawa, N. (2000). 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell, 100(2), 241–252. doi:10.1016/S0092-8674(00)81562-7
  • Kirszenblat, L., Neumann, B., Coakley, S., & Hilliard, M.A. (2013). A dominant mutation in mec-7/β-tubulin affects axon development and regeneration in Caenorhabditis elegans neurons. Molecular Biology of the Cell, 24(3), 285–296. doi:10.1091/mbc.E12-06-0441
  • Klassen, M.P., Wu, Y.E., Maeder, C.I., Nakae, I., Cueva, J.G., Lehrman, E.K., … Shen, K. (2010). An arf-like small G protein, ARL-8, promotes the axonal transport of presynaptic cargoes by suppressing vesicle aggregation. Neuron, 66(5), 710–723. doi:10.1016/j.neuron.2010.04.033
  • Klopfenstein, D.R., Tomishige, M., Stuurman, N., & Vale, R.D. (2002). Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell, 109(3), 347–358. doi:10.1016/S0092-8674(02)00708-0
  • Klopfenstein, D.R., & Vale, R.D. (2004). The lipid binding pleckstrin homology domain in UNC-104 kinesin is necessary for synaptic vesicle transport in Caenorhabditis elegans□D □V. Molecular Biology of the Cell, 15 (8), 3729–3739. doi:10.1091/mbc.e04-04-0326
  • Koushika, S.P., Schaefer, A.M., Vincent, R., Willis, J.H., Bowerman, B., & Nonet, M.L. (2004). Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(16), 3907–3916. doi:10.1523/JNEUROSCI.5039-03.2004
  • Kumar, J., Choudhary, B.C., Metpally, R., Zheng, Q., Nonet, M.L., Ramanathan, S., … Koushika, S.P. (2010). The Caenorhabditis elegans kinesin-3 motor UNC-104/KIF1A is degraded upon loss of specific binding to cargo. PLoS Genetics, 6(11), e1001200. doi:10.1371/journal.pgen.1001200
  • Kurup, N., Li, Y., Goncharov, A., & Jin, Y. (2018). Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3114–3119. doi:10.1073/pnas.1721930115
  • Kurup, N., Yan, D., Goncharov, A., & Jin, Y. (2015). Dynamic microtubules drive circuit rewiring in the absence of neurite remodeling. Current Biology, 25(12), 1594–1605. doi:10.1016/j.cub.2015.04.061
  • Kurup, N., Yan, D., Kono, K., & Jin, Y. (2017). Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans. PLoS Genetics, 13(6), e1006844. doi:10.1371/journal.pgen.1006844
  • Lai, T., & Garriga, G. (2004). The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans. Development, 131(23), 5991–6000. doi:10.1242/dev.01457
  • Leterrier, C. (2018). The axon initial segment: An updated viewpoint. The Journal of Neuroscience, 38(9), 2135–2145. doi:10.1523/JNEUROSCI.1922-17.2018
  • Li, J.-Y., Pfister, K.K., Brady, S., & Dahlström, A. (1999). Axonal transport and distribution of immunologically distinct kinesin heavy chains in rat neurons. Journal of Neuroscience Research, 58 (2), 226–241. doi:10.1002/(SICI)1097-4547(19991015)58:2<226::AID-JNR3>3.0.CO;2-X
  • Li, L.-B., Lei, H., Arey, R.N., Li, P., Liu, J., Murphy, C.T., … Shen, K. (2016). The neuronal kinesin UNC-104/KIF1A is a key regulator of synaptic aging and insulin signaling-regulated memory. Current Biology, 26(5), 605–615. doi:10.1016/j.cub.2015.12.068
  • Li, S.-H., Gutekunst, C.-A., Hersch, S.M., & Li, X.-J. (1998). Interaction of huntingtin-associated protein with dynactin P150Glued. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18(4), 1261–1269. doi:10.1523/JNEUROSCI.18-04-01261.1998
  • Ligon, L.A., Tokito, M., Finklestein, J.M., Grossman, F.E., & Holzbaur, E.L.F. (2004). A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. The Journal of Biological Chemistry, 279(18), 19201–19208. doi:10.1074/jbc.M313472200
  • Lipton, D.M., Maeder, C.I., & Shen, K. (2018). Rapid assembly of presynaptic materials behind the growth cone in dopaminergic neurons is mediated by precise regulation of axonal transport. Cell Reports, 24(10), 2709–2722. doi:10.1016/j.celrep.2018.07.096
  • Maday, S., Twelvetrees, A.E., Moughamian, A.J., & Holzbaur, E.L.F. (2014). Axonal transport: Cargo-specific mechanisms of motility and regulation. Neuron, 84(2), 292–309. doi:10.1016/j.neuron.2014.10.019
  • Magiera, M.M., Bodakuntla, S., Žiak, J., Lacomme, S., Marques Sousa, P., Leboucher, S., … Janke, C. (2018). Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. The EMBO Journal, 37(23). doi:10.15252/embj.2018100440
  • Mallik, R., & Gross, S.P. (2009). Intracellular transport: How do motors work together? Current Biology, 19(10), R416–R418. doi:10.1016/j.cub.2009.04.007
  • Mandal, A., & Drerup, C.M. (2019). Axonal transport and mitochondrial function in neurons. Frontiers in Cellular Neuroscience, 13, 373. doi:10.3389/fncel.2019.00373
  • Mandelkow, E.-M., Thies, E., Trinczek, B., Biernat, J., & Mandelkow, E. (2004). MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. Journal of Cell Biology, 167(1), 99–110. doi:10.1083/jcb.200401085
  • Maniar, T.A., Kaplan, M., Wang, G.J., Shen, K., Wei, L., Shaw, J.E., … Bargmann, C.I. (2011). UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nature Neuroscience, 15(1), 48–56. doi:10.1038/nn.2970
  • Marcette, J.D., Chen, J.J., & Nonet, M.L. (2014). The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. eLife, 3, e01637. doi:10.7554/eLife.01637
  • Matsuda, S., Yasukawa, T., Homma, Y., Ito, Y., Niikura, T., Hiraki, T., … Nishimoto, I. (2001). c-Jun N-terminal kinase (JNK)-interacting protein-1b/islet-brain-1 scaffolds Alzheimer’s amyloid precursor protein with JNK. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(17), 6597–6607. doi:10.1523/JNEUROSCI.21-17-06597.2001
  • Mikhaylova, M., Cloin, B.M.C., Finan, K., van den Berg, R., Teeuw, J., Kijanka, M.M., … Kapitein, L.C. (2015). Resolving bundled microtubules using anti-tubulin nanobodies. Nature Communications, 6(1), 7933. doi:10.1038/ncomms8933
  • Miller, K.G., Alfonso, A., Nguyen, M., Crowell, J.A., Johnson, C.D., & Rand, J.B. (1996). A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proceedings of the National Academy of Sciences of the United States of America, 93(22), 12593–12598. doi:10.1073/pnas.93.22.12593
  • Mitchell, D.J., Blasier, K.R., Jeffery, E.D., Ross, M.W., Pullikuth, A.K., Suo, D., … Pfister, K.K. (2012). Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. The Journal of Neuroscience, 32(44), 15495–15510. doi:10.1523/JNEUROSCI.5599-11.2012
  • Mondal, S., Ahlawat, S., Rau, K., Venkataraman, V., & Koushika, S.P. (2011). Imaging in vivo neuronal transport in genetic model organisms using microfluidic devices. Traffic, 12(4), 372–385. doi:10.1111/j.1600-0854.2010.01157.x
  • Monroy, B.Y., Sawyer, D.L., Ackermann, B.E., Borden, M.M., Tan, T.C., & Ori-McKenney, K.M. (2018). Competition between microtubule-associated proteins directs motor transport. Nature Communications, 9(1), 1487. doi:10.1038/s41467-018-03909-2
  • Monroy, B.Y., Tan, T.C., Oclaman, J.M., Han, J.S., Simó, S., Niwa, S., … Ori-McKenney, K.M. (2020). A combinatorial MAP code dictates polarized microtubule transport. Developmental Cell, 53(1), 60–72.e4. doi:10.1016/j.devcel.2020.01.029
  • Montagnac, G., Sibarita, J.-B., Loubéry, S., Daviet, L., Romao, M., Raposo, G., & Chavrier, P. (2009). ARF6 interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Current Biology, 19(3), 184–195. doi:10.1016/j.cub.2008.12.043
  • Morfini, G. A., Burns, M. R., Stenoien, D. L., & Brady, S. T. (2012). Axonal Transport. In S. T. Brady, G. J. Siegel, R. W. Albers & D. L. Price (Eds.), Basic Neurochemistry (pp. 146–164). Elsevier.
  • Morris, R.L., & Hollenbeck, P.J. (1995). Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. The Journal of Cell Biology, 131(5), 1315–1326. doi:10.1083/jcb.131.5.1315
  • Moughamian, A.J., Osborn, G.E., Lazarus, J.E., Maday, S., & Holzbaur, E.L.F. (2013). Ordered recruitment of dynactin to the microtubule plus-end is required for efficient initiation of retrograde axonal transport. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(32), 13190–13203. doi:10.1523/JNEUROSCI.0935-13.2013
  • Muresan, V., Stankewich, M.C., Steffen, W., Morrow, J.S., Holzbaur, E.L.F., & Schnapp, B.J. (2001). Dynactin-dependent, dynein-driven vesicle transport in the absence of membrane proteins: A role for spectrin and acidic phospholipids. Molecular Cell, 7 (1), 173–183. doi:10.1016/s1097-2765(01)00165-4
  • Murthy, K., Bhat, J.M., & Koushika, S.P. (2011). In vivo imaging of retrogradely transported synaptic vesicle proteins in Caenorhabditis elegans neurons. Traffic, 12(1), 89–101. doi:10.1111/j.1600-0854.2010.01127.x
  • Neumann, B., & Hilliard, M.A. (2014). Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Reports, 6(1), 93–103. doi:10.1016/j.celrep.2013.12.004
  • Niwa, S., Lipton, D.M., Morikawa, M., Zhao, C., Hirokawa, N., Lu, H., & Shen, K. (2016). Autoinhibition of a neuronal kinesin UNC-104/KIF1A regulates the size and density of synapses. Cell Reports, 16(8), 2129–2141. doi:10.1016/j.celrep.2016.07.043
  • Niwa, S., Tanaka, Y., & Hirokawa, N. (2008). KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature Cell Biology, 10(11), 1269–1279. doi:10.1038/ncb1785
  • Niwa, S., Tao, L., Lu, S.Y., Liew, G.M., Feng, W., Nachury, M.V., & Shen, K. (2017). BORC regulates the axonal transport of synaptic vesicle precursors by activating ARL-8. Current Biology, 27(17), 2569–2578.e4. doi:10.1016/j.cub.2017.07.013
  • Noma, K., Goncharov, A., Ellisman, M.H., & Jin, Y. (2017). Microtubule-dependent ribosome localization in C. elegans neurons. eLife, 6, e26376. doi:10.7554/eLife.26376
  • O’Hagan, R., & Barr, M. (2012). Regulation of tubulin glutamylation plays cell-specific roles in the function and stability of sensory cilia. Worm, 1(3), 155–159. 10.4161/worm.19539
  • O’Hagan, R., Piasecki, B.P., Silva, M., Phirke, P., Nguyen, K.C.Q., Hall, D.H., … Barr, M.M. (2011). The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Current Biology, 21(20), 1685–1694. 10.1016/j.cub.2011.08.049
  • O’Hagan, R., Silva, M., Nguyen, K.C.Q., Zhang, W., Bellotti, S., Ramadan, Y.H., … Barr, M.M. (2017). Glutamylation regulates transport, specializes function, and sculpts the structure of cilia. Current Biology, 27(22), 3430.e6–3441.e6. doi:10.1016/j.cub.2017.09.066
  • Okada, Y., Yamazaki, H., Sekine-Aizawa, Y., & Hirokawa, N. (1995). The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell, 81 (5), 769–780. doi:10.1016/0092-8674(95)90538-3
  • Olenick, M.A., Tokito, M., Boczkowska, M., Dominguez, R., & Holzbaur, E.L.F. (2016). Hook adaptors induce unidirectional processive motility by enhancing the dynein-dynactin interaction. The Journal of Biological Chemistry, 291(35), 18239–18251. doi:10.1074/jbc.M116.738211
  • Otsuka, A.J., Jeyaprakash, A., García-Añoveros, J., Tang, L.Z., Fisk, G., Hartshorne, T., … Bornt, T. (1991). The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein. Neuron, 6(1), 113–122. doi:10.1016/0896-6273(91)90126-K
  • Ou, C.-Y., Poon, V.Y., Maeder, C.I., Watanabe, S., Lehrman, E.K., Fu, A.K.Y., … Shen, K. (2010). Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell, 141(5), 846–858. doi:10.1016/j.cell.2010.04.011
  • Pack-Chung, E., Kurshan, P.T., Dickman, D.K., & Schwarz, T.L. (2007). A Drosophila kinesin required for synaptic bouton formation and synaptic vesicle transport. Nature Neuroscience, 10(8), 980–989. doi:10.1038/nn1936
  • Pan, X., Cao, Y., Stucchi, R., Hooikaas, P.J., Portegies, S., Will, L., … Hoogenraad, C.C. (2019). MAP7D2 localizes to the proximal axon and locally promotes kinesin-1-mediated cargo transport into the axon. Cell Reports, 26(8), 1988.e6–1999.e6. doi:10.1016/j.celrep.2019.01.084
  • Park, M., Watanabe, S., Poon, V.Y.N., Ou, C.-Y., Jorgensen, E.M., & Shen, K. (2011). CYY-1/cyclin Y and CDK-5 differentially regulate synapse elimination and formation for rewiring neural circuits. Neuron, 70(4), 742–757. doi:10.1016/j.neuron.2011.04.002
  • Patel, N., Thierry-Mieg, D., & Mancillas, J.R. (1993). Cloning by insertional mutagenesis of a cDNA encoding Caenorhabditis elegans kinesin heavy chain. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 9181–9185. doi:10.1073/pnas.90.19.9181
  • Perrot, R., & Julien, J.-P. (2009). Real-time imaging reveals defects of fast axonal transport induced by disorganization of intermediate filaments. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23(9), 3213–3225. doi:10.1096/fj.09-129585
  • Prevo, B., Scholey, J.M., & Peterman, E.J.G. (2017). Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. The FEBS Journal, 284(18), 2905–2931. doi:10.1111/febs.14068
  • Qu, X., Kumar, A., Blockus, H., Waites, C., & Bartolini, F. (2019). Activity-dependent nucleation of dynamic microtubules at presynaptic boutons controls neurotransmission. Current Biology, 29(24), 4231–4240.e5. doi:10.1016/j.cub.2019.10.049
  • Rao, A.N., & Baas, P.W. (2018). Polarity sorting of microtubules in the axon. Trends in Neurosciences, 41(2), 77–88. doi:10.1016/j.tins.2017.11.002
  • Rawson, R.L., Yam, L., Weimer, R.M., Bend, E.G., Hartwieg, E., Horvitz, H.R., … Jorgensen, E.M. (2014). Axons degenerate in the absence of mitochondria in C. elegans. Current Biology, 24(7), 760–765. doi:10.1016/j.cub.2014.02.025
  • Ray, K., Perez, S.E., Yang, Z., Xu, J., Ritchings, B.W., Steller, H., & Goldstein, L.S.B. (1999). Kinesin-II Is required for axonal transport of choline acetyltransferase in Drosophila. The Journal of Cell Biology, 147(3), 507–518. doi:10.1083/jcb.147.3.507
  • Richardson, C.E., Spilker, K.A., Cueva, J.G., Perrino, J., Goodman, M.B., & Shen, K. (2014). PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons. eLife, 3, e01498. doi:10.7554/eLife.01498
  • Roberts, A.J., Kon, T., Knight, P.J., Sutoh, K., & Burgess, S.A. (2013). Functions and mechanics of dynein motor proteins. Nature Reviews Molecular Cell Biology, 14(11), 713–726. doi:10.1038/nrm3667
  • Ross, J.L., Shuman, H., Holzbaur, E.L.F., & Goldman, Y.E. (2008). Kinesin and dynein-dynactin at intersecting microtubules: Motor density affects dynein function. Biophysical Journal, 94(8), 3115–3125. doi:10.1529/biophysj.107.120014
  • Roy, S. (2020). Finding order in slow axonal transport. Current Opinion in Neurobiology, 63, 87–94. doi:10.1016/j.conb.2020.03.015
  • Sabharwal, V., & Koushika, S.P. (2019). Crowd control: Effects of physical crowding on cargo movement in healthy and diseased neurons. Frontiers in Cellular Neuroscience, 13, 470. doi:10.3389/fncel.2019.00470
  • Sainath, R., & Gallo, G. (2015). Cytoskeletal and signaling mechanisms of neurite formation. Cell and Tissue Research, 359(1), 267–278. doi:10.1007/s00441-014-1955-0
  • Sakamoto, R., Byrd, D.T., Brown, H.M., Hisamoto, N., Matsumoto, K., & Jin, Y. (2005). The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Molecular Biology of the Cell, 16(2), 483–496. doi:10.1091/mbc.e04-07-0553
  • Schroeder, H.W., Mitchell, C., Shuman, H., Holzbaur, E.L.F., & Goldman, Y.E. (2010). Motor number controls cargo switching at actin-microtubule intersections in vitro. Current Biology, 20(8), 687–696. doi:10.1016/j.cub.2010.03.024
  • Shakir, M.A., Fukushige, T., Yasuda, H., Miwa, J., & Siddiqui, S.S. (1993). C. elegans osm-3 gene mediating osmotic avoidance behaviour encodes a kinesin-like protein. Neuroreport, 4(7), 891–894. doi:10.1097/00001756-199307000-00013
  • Shakiryanova, D., Tully, A., & Levitan, E.S. (2006). Activity-dependent synaptic capture of transiting peptidergic vesicles. Nature Neuroscience, 9(7), 896–900. doi:10.1038/nn1719
  • Shao, C.-Y., Zhu, J., Xie, Y.-J., Wang, Z., Wang, Y.-N., Wang, Y., … Shen, Y. (2013). Distinct functions of nuclear distribution proteins LIS1, Ndel1 and NudCL in regulating axonal mitochondrial transport: Nud proteins regulate mitochondrial transport. Traffic, 14(7), 785–797. doi:10.1111/tra.12070
  • Shida, T., Cueva, J.G., Xu, Z., Goodman, M.B., & Nachury, M.V. (2010). The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21517–21522. doi:10.1073/pnas.1013728107
  • Siddiqui, N., & Straube, A. (2017). Intracellular cargo transport by kinesin-3 motors. Biochemistry. Biokhimiia, 82(7), 803–815. doi:10.1134/S0006297917070057
  • Siddiqui, S.S. (2002). Metazoan motor models: Kinesin superfamily in C. elegans. Traffic, 3(1), 20–28. doi:10.1034/j.1600-0854.2002.30104.x
  • Sood, P., Murthy, K., Kumar, V., Nonet, M.L., Menon, G.I., & Koushika, S.P. (2018). Cargo crowding at actin-rich regions along axons causes local traffic jams. Traffic, 19(3), 166–181. doi:10.1111/tra.12544
  • Splinter, D., Razafsky, D.S., Schlager, M.A., Serra-Marques, A., Grigoriev, I., Demmers, J., … Akhmanova, A. (2012). BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Molecular Biology of the Cell, 23(21), 4226–4241. doi:10.1091/mbc.E12-03-0210
  • Stavoe, A.K.H., Hill, S.E., Hall, D.H., & Colón-Ramos, D.A. (2016). KIF1A/UNC-104 transports ATG-9 to regulate neurodevelopment and autophagy at synapses. Developmental Cell, 38(2), 171–185. doi:10.1016/j.devcel.2016.06.012
  • Stewart, E., & Shen, K. (2015). STORMing towards a clear picture of the cytoskeleton in neurons. eLife, 4. doi:10.7554/eLife.06235
  • Su, C. W., Tharin, S., Jin, Y., Wightman, B., Spector, M., Meili, D., Tsung, N., Rhiner, C., Bourikas, D., Stoeckli, E., Garriga, G., Horvitz, H. R., & Hengartner, M. O. (2006). The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. Journal of biology, 5(4), 9. https://doi.org/10.1186/jbiol39
  • Sure, G.R., Chatterjee, A., Mishra, N., Sabharwal, V., Devireddy, S., Awasthi, A., … Koushika, S.P. (2018). UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Scientific Reports, 8(1), 8938. doi:10.1038/s41598-018-27211-9
  • Tas, R.P., Chazeau, A., Cloin, B.M.C., Lambers, M.L.A., Hoogenraad, C.C., & Kapitein, L.C. (2017). Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron, 96(6), 1264–1271.e5. doi:10.1016/j.neuron.2017.11.018
  • Taylor, C.A., Yan, J., Howell, A.S., Dong, X., & Shen, K. (2015). RAB-10 regulates dendritic branching by balancing dendritic transport. PLoS Genetics, 11(12), e1005695. doi:10.1371/journal.pgen.1005695
  • Thapliyal, S., Vasudevan, A., Dong, Y., Bai, J., Koushika, S.P., & Babu, K. (2018). The C-terminal of CASY-1/Calsyntenin regulates GABAergic synaptic transmission at the Caenorhabditis elegans neuromuscular junction. PLoS Genetics, 14(3), e1007263. doi:10.1371/journal.pgen.1007263
  • Thomas, J.H. (1990). Genetic analysis of defecation in Caenorhabditis elegans. Trends in Genetics, 6, 175. doi:10.1016/0168-9525(90)90166-4
  • Tien, N.-W., Wu, G.-H., Hsu, C.-C., Chang, C.-Y., & Wagner, O.I. (2011). Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiology of Disease, 43(2), 495–506. doi:10.1016/j.nbd.2011.04.023
  • Tomishige, M., Klopfenstein, D.R., & Vale, R.D. (2002). Conversion of UNC104/KIF1A kinesin into a processive motor after dimerization. Science, 297(5590), 2263–2267. doi:10.1126/science.1073386
  • Topalidou, I., Keller, C., Kalebic, N., Nguyen, K.C.Q., Somhegyi, H., Politi, K.A., … Chalfie, M. (2012). Genetically separable functions of the MEC-17 tubulin acetyltransferase affect microtubule organization. Current Biology, 22(12), 1057–1065. doi:10.1016/j.cub.2012.03.066
  • Tsuboi, D., Hikita, T., Qadota, H., Amano, M., & Kaibuchi, K. (2005). Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans. Journal of Neurochemistry, 95(6), 1629–1641. doi:10.1111/j.1471-4159.2005.03490.x
  • Urnavicius, L., Lau, C.K., Elshenawy, M.M., Morales-Rios, E., Motz, C., Yildiz, A., & Carter, A.P. (2018). Cryo-EM shows how dynactin recruits two dyneins for faster movement. Nature, 554(7691), 202–206. doi:10.1038/nature25462
  • van Spronsen, M., Mikhaylova, M., Lipka, J., Schlager, M.A., van den Heuvel, D.J., Kuijpers, M., … Hoogenraad, C.C. (2013). TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron, 77(3), 485–502. doi:10.1016/j.neuron.2012.11.027
  • Venkatesh, K., Mathew, A., & Koushika, S.P. (2020). Role of actin in organelle trafficking in neurons. Cytoskeleton, 77(3–4), 97–109. doi:10.1002/cm.21580
  • Verbrugge, S., van den Wildenberg, S.M.J.L., & Peterman, E.J.G. (2009). Novel ways to determine kinesin-1's run length and randomness using fluorescence microscopy. Biophysical Journal, 97(8), 2287–2294. doi:10.1016/j.bpj.2009.08.001
  • Vershinin, M., Carter, B.C., Razafsky, D.S., King, S.J., & Gross, S.P. (2007). Multiple-motor based transport and its regulation by Tau. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 87–92. doi:10.1073/pnas.0607919104
  • Wagner, O.I., Esposito, A., Kohler, B., Chen, C.-W., Shen, C.-P., Wu, G.-H., … Klopfenstein, D.R. (2009). Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19605–19610. doi:10.1073/pnas.0902949106
  • Weiss, P., & Hiscoe, H.B. (1948). Experiments on the mechanism of nerve growth. The Journal of Experimental Zoology, 107(3), 315–395. doi:10.1002/jez.1401070302
  • Wolf, F.W., Hung, M.-S., Wightman, B., Way, J., & Garriga, G. (1998). vab-8 Is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron, 20(4), 655–666. doi:10.1016/S0896-6273(00)81006-5
  • Wu, G.-H., Muthaiyan Shanmugam, M., Bhan, P., Huang, Y.-H., & Wagner, O.I. (2016). Identification and characterization of LIN-2(CASK) as a regulator of kinesin-3 UNC-104(KIF1A) motility and clustering in neurons: Regulation of UNC-104 via LIN-2 and SYD-2. Traffic, 17(8), 891–907. doi:10.1111/tra.12413
  • Wu, Y.E., Huo, L., Maeder, C.I., Feng, W., & Shen, K. (2013). The Balance between capture and dissociation of presynaptic proteins controls the spatial distribution of synapses. Neuron, 78(6), 994–1011. doi:10.1016/j.neuron.2013.04.035
  • Yan, J., Chao, D.L., Toba, S., Koyasako, K., Yasunaga, T., Hirotsune, S., & Shen, K. (2013). Kinesin-1 regulates dendrite microtubule polarity in Caenorhabditis elegans. eLife, 2, e00133. doi:10.7554/eLife.00133
  • Yogev, S., Cooper, R., Fetter, R., Horowitz, M., & Shen, K. (2016). Microtubule organization determines axonal transport dynamics. Neuron, 92(2), 449–460. doi:10.1016/j.neuron.2016.09.036
  • Yonekawa, Y., Harada, A., Okada, Y., Funakoshi, T., Kanai, Y., Takei, Y., … Hirokawa, N. (1998). Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. Journal of Cell Biology, 141(2), 431–441. doi:10.1083/jcb.141.2.431
  • Yu, C.-C., Barry, N.C., Wassie, A.T., Sinha, A., Bhattacharya, A., Asano, S., … Boyden, E.S. (2020). Expansion microscopy of C. elegans. eLife, 9, e46249. doi:10.7554/eLife.46249
  • Yuan, A., Rao, M.V., Veeranna.,   & Nixon, R.A. (2017). Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harbor Perspectives in Biology, 9(4), a018309. doi:10.1101/cshperspect.a018309
  • Yue, Y., Sheng, Y., Zhang, H.-N., Yu, Y., Huo, L., Feng, W., & Xu, T. (2013). The CC1-FHA dimer is essential for KIF1A-mediated axonal transport of synaptic vesicles in C. elegans. Biochemical and Biophysical Research Communications, 435(3), 441–446. doi:10.1016/j.bbrc.2013.05.005
  • Zahn, T.R., Angleson, J.K., MacMorris, M.A., Domke, E., Hutton, J.F., Schwartz, C., & Hutton, J.C. (2004). Dense core vesicle dynamics in Caenorhabditis elegans neurons and the role of kinesin UNC-104: IDA-1:: GFP transport in C. elegans neurons. Traffic, 5(7), 544–559. doi:10.1111/j.1600-0854.2004.00195.x
  • Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., … Hirokawa, N. (2001). Charcot-marie-tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell, 105(5), 587–597. doi:10.1016/S0092-8674(01)00363-4
  • Zheng, Q., Ahlawat, S., Schaefer, A., Mahoney, T., Koushika, S.P., & Nonet, M.L. (2014). The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. PLoS Genetics, 10(10), e1004644. doi:10.1371/journal.pgen.1004644

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.