1,558
Views
21
CrossRef citations to date
0
Altmetric
Section 3: From inputs to outputs

C. elegans: a sensible model for sensory biology

&
Pages 347-350 | Received 02 Jul 2020, Accepted 24 Aug 2020, Published online: 16 Nov 2020

References

  • Bargmann, C. (2006). Chemosensation in C. elegans. WormBook. Retrieved from doi:10.1895/wormbook.1.123.1
  • Bhatla, N., & Horvitz, H.R. (2015). Light and hydrogen peroxide inhibit C. elegans feeding through gustatory receptor orthologs and pharyngeal neurons. Neuron, 85(4), 804–818. Retrieved from doi:10.1016/j.neuron.2014.12.061
  • Bretscher, A.J., Busch, K.E., & de Bono, M. (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 105(23), 8044–8049. Retrieved from doi:10.1073/pnas.0707607105
  • Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65(1), 175–187. Retrieved from doi:10.1016/0092-8674(91)90418-X
  • Chatzigeorgiou, M., Yoo, S., Watson, J.D., Lee, W.H., Spencer, W.C., Kindt, K.S., … Schafer, W.R. (2010). Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nature Neuroscience, 13(7), 861–868. Retrieved from doi:10.1038/nn.2581
  • Chen, W.L., Ko, H., Chuang, H.S., Bau, H.H., & Raizen, D. (2019). Caenorhabditis elegans exhibits positive gravitaxis [Preprint]. BioRxiv, Retrieved from doi:10.1101/658229
  • Driscoll, M., & Chalfie, M. (1991). The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature, 349(6310), 588–593. doi:10.1038/349588a0
  • Edwards, S.L., Charlie, N.K., Milfort, M.C., Brown, B.S., Gravlin, C.N., Knecht, J.E., & Miller, K.G. (2008). A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biology, 6(8), e198. Retrieved from doi:10.1371/journal.pbio.0060198
  • Gabel, C.V., Gabel, H., Pavlichin, D., Kao, A., Clark, D.A., & Samuel, A.D.T. (2007). Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. The Journal of Neuroscience, 27(28), 7586–7596. Retrieved from doi:10.1523/JNEUROSCI.0775-07.2007
  • Ghosh, D.D., Nitabach, M.N., Zhang, Y., & Harris, G. (2017). Multisensory integration in C. elegans. Current Opinion in Neurobiology, 43, 110–118. Retrieved from doi:10.1016/j.conb.2017.01.005
  • Ghosh, D.D., Sanders, T., Hong, S., McCurdy, L.Y., Chase, D.L., Cohen, N., … Nitabach, M.N. (2016). Neural architecture of hunger-dependent multisensory decision making in C. elegans. Neuron, 92(5), 1049–1062. Retrieved from doi:10.1016/j.neuron.2016.10.030
  • Gong, J., Liu, J., Ronan, E.A., He, F., Cai, W., Fatima, M., … Xu, X.Z.S. (2019). A cold-sensing receptor encoded by a glutamate receptor gene. Cell, 178(6), 1375–1386.e11. Retrieved from doi:10.1016/j.cell.2019.07.034
  • Gong, J., Yuan, Y., Ward, A., Kang, L., Zhang, B., Wu, Z., … Xu, X.Z.S. (2016). The C. elegans taste receptor homolog LITE-1 is a photoreceptor. Cell, 167(5), 1252–1263.e10. Retrieved from doi:10.1016/j.cell.2016.10.053
  • Goodman, M. (2006). Mechanosensation. WormBook. Retrieved from doi:10.1895/wormbook.1.62.1
  • Goodman, M.B. (2014). Thermotaxis navigation behavior. WormBook, 1–10. Retrieved from doi:10.1895/wormbook.1.168.1
  • Hallem, E.A., & Sternberg, P.W. (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 105(23), 8038–8043. Retrieved from doi:10.1073/pnas.0707469105
  • Hobert, O. (2013). The neuronal genome of Caenorhabditis elegans. WormBook, 1–106. Retrieved from doi:10.1895/wormbook.1.161.1
  • Inada, H., Ito, H., Satterlee, J., Sengupta, P., Matsumoto, K., & Mori, I. (2006). Identification of guanylyl cyclases that function in thermosensory neurons of Caenorhabditis elegans. Genetics, 172(4), 2239–2252. Retrieved from doi:10.1534/genetics.105.050013
  • Kang, L., Gao, J., Schafer, W.R., Xie, Z., & Xu, X.Z.S. (2010). C. elegans trp family protein trp-4 is a pore-forming subunit of a native mechanotransduction channel. Neuron, 67(3), 381–391. Retrieved from doi:10.1016/j.neuron.2010.06.032
  • Li, W., Feng, Z., Sternberg, P.W., & Xu, X.Z.S. (2006). A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature, 440(7084), 684–687. Retrieved from doi:10.1038/nature04538
  • Liu, J., Ward, A., Gao, J., Dong, Y., Nishio, N., Inada, H., … Xu, X.Z.S. (2010). C. elegans phototransduction requires a G protein-dependent cGMP pathway and a taste receptor homolog. Nature Neuroscience, 13(6), 715–722. Retrieved from doi:10.1038/nn.2540
  • Liu, S., Schulze, E., & Baumeister, R. (2012). Temperature- and touch-sensitive neurons couple cng and trpv channel activities to control heat avoidance in Caenorhabditis elegans. PLoS One, 7(3), e32360. Retrieved from doi:10.1371/journal.pone.0032360
  • Mori, I., & Ohshima, Y. (1995). Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 376(6538), 344–348. Retrieved from doi:10.1038/376344a0
  • Russell, J., Vidal-Gadea, A.G., Makay, A., Lanam, C., & Pierce-Shimomura, J.T. (2014). Humidity sensation requires both mechanosensory and thermosensory pathways in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 111(22), 8269–8274. Retrieved from doi:10.1073/pnas.1322512111
  • Saro, G., Lia, A.S., Thapliyal, S., Marques, F., Busch, K.E., & Glauser, D.A. (2020). Specific ion channels control sensory gain, sensitivity, and kinetics in a tonic thermonociceptor. Cell Reports, 30(2), 397–408.e4. Retrieved from doi:10.1016/j.celrep.2019.12.029
  • Sengupta, P., Chou, J.H., & Bargmann, C.I. (1996). Odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell, 84(6), 899–909. Retrieved from doi:10.1016/S0092-8674(00)81068-5
  • Troemel, E.R., Chou, J.H., Dwyer, N.D., Colbert, H.A., & Bargmann, C.I. (1995). Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell, 83(2), 207–218. Retrieved from doi:10.1016/0092-8674(95)90162-0
  • Vidal-Gadea, A., Ward, K., Beron, C., Ghorashian, N., Gokce, S., Russell, J., … Pierce-Shimomura, J. (2015). Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans. eLife, 4, e07493. Retrieved from doi:10.7554/eLife.07493
  • Wang, X., Li, G., Liu, J., Liu, J., & Xu, X.Z.S. (2016). Tmc-1 mediates alkaline sensation in C. elegans through Nociceptive Neurons. Neuron, 91(1), 146–154. Retrieved from doi:10.1016/j.neuron.2016.05.023
  • Ward, A., Liu, J., Feng, Z., & Xu, X.Z.S. (2008). Light-sensitive neurons and channels mediate phototaxis in C. elegans. Nature Neuroscience, 11(8), 916–922. Retrieved from doi:10.1038/nn.2155
  • Wen, Q., Po, M.D., Hulme, E., Chen, S., Liu, X., Kwok, S.W., … Samuel, A.D.T. (2012). Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron, 76(4), 750–761. Retrieved from doi:10.1016/j.neuron.2012.08.039
  • White, J.G., Southgate, E., Thomson, J.N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 314(1165), 1–340. Retrieved from doi:10.1098/rstb.1986.0056
  • Xiao, R., Zhang, B., Dong, Y., Gong, J., Xu, T., Liu, J., & Xu, X.Z.S. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive trp channel. Cell, 152(4), 806–817. Retrieved from doi:10.1016/j.cell.2013.01.020
  • Zhang, B., Gong, J., Zhang, W., Xiao, R., Liu, J., & Xu, X.Z.S. (2018). Brain-gut communications via distinct neuroendocrine signals bidirectionally regulate longevity in C. elegans. Genes & Development, 32(3–4), 258–270. Retrieved from doi:10.1101/gad.309625.117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.