1,055
Views
6
CrossRef citations to date
0
Altmetric
Section 5: Quiescence and sleep

Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 440-452 | Received 17 Jun 2020, Accepted 25 Sep 2020, Published online: 12 Oct 2020

References

  • Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., & Lake, J.A. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387(6632), 489–493. doi:10.1038/387489a0
  • Arribere, J.A., Bell, R.T., Fu, B.X., Artiles, K.L., Hartman, P.S., & Fire, A.Z. (2014). Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics, 198(3), 837–846. doi:10.1534/genetics.114.169730
  • Charlie, N.K., Thomure, A.M., Schade, M.A., & Miller, K.G. (2006). The Dunce cAMP phosphodiesterase PDE-4 negatively regulates G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the Caenorhabditis elegans synaptic signaling network. Genetics, 173(1), 111–130. doi:10.1534/genetics.105.054007
  • Chen, J., Choi, M.S., Mizoguchi, A., Veenstra, J.A., Kang, K., Kim, Y.J., & Kwon, J.Y. (2015). Isoform-specific expression of the neuropeptide orcokinin in Drosophila melanogaster. Peptides, 68, 50–57. doi:10.1016/j.peptides.2015.01.002
  • Chiu, C.N., Rihel, J., Lee, D.A., Singh, C., Mosser, E.A., Chen, S., … Prober, D.A. (2016). A zebrafish genetic screen identifies neuromedin U as a regulator of sleep/wake states. Neuron, 89(4), 842–856. doi:10.1016/j.neuron.2016.01.007
  • Choi, S., Chatzigeorgiou, M., Taylor, K.P., Schafer, W.R., & Kaplan, J.M. (2013). Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron, 78(5), 869–880. doi:10.1016/j.neuron.2013.04.002
  • Churgin, M.A., Jung, S.K., Yu, C.C., Chen, X., Raizen, D.M., & Fang-Yen, C. (2017). Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife, 6, e26652. doi:10.7554/eLife.26652
  • Cianciulli, A., Yoslov, L., Buscemi, K., Sullivan, N., Vance, R.T., Janton, F., … Nelson, M.D. (2019). Interneurons regulate locomotion quiescence via cyclic adenosine monophosphate signaling during stress-induced sleep in Caenorhabditis elegans. Genetics, 213(1), 267–279. doi:10.1534/genetics.119.302293
  • Crowe, J. (1975). The physiology of cryptobiosis in tardigrades. Memorie dell'Istituto italiano di idrobiologia 32, 37–59.
  • Davis, M.W., Somerville, D., Lee, R.Y., Lockery, S., Avery, L., & Fambrough, D.M. (1995). Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function. The Journal of Neuroscience, 15(12), 8408–8418. doi:10.1523/JNEUROSCI.15-12-08408.1995
  • DeBardeleben, H.K., Lopes, L.E., Nessel, M.P., & Raizen, D.M. (2017). Stress-induced sleep after exposure to ultraviolet light is promoted by p53 in Caenorhabditis elegans. Genetics, 207(2), 571–582. doi:10.1534/genetics.117.300070
  • Dickinson, P.S., Stemmler, E.A., Barton, E.E., Cashman, C.R., Gardner, N.P., Rus, S., … Christie, A.E. (2009). Molecular, mass spectral, and physiological analyses of orcokinins and orcokinin precursor-related peptides in the lobster Homarus americanus and the crayfish Procambarus clarkii. Peptides, 30(2), 297–317. doi:10.1016/j.peptides.2008.10.009
  • Foltenyi, K., Greenspan, R.J., & Newport, J.W. (2007). Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nature Neuroscience, 10(9), 1160–1167. doi:10.1038/nn1957
  • George-Raizen, J.B., Shockley, K.R., Trojanowski, N.F., Lamb, A.L., & Raizen, D.M. (2014). Dynamically-expressed prion-like proteins form a cuticle in the pharynx of Caenorhabditis elegans. Biology Open, 3(11), 1139–1149. doi:10.1242/bio.20147500
  • Hapiak, V., Summers, P., Ortega, A., Law, W.J., Stein, A., & Komuniecki, R. (2013). Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans. The Journal of Neuroscience, 33(35), 14107–14116. doi:10.1523/JNEUROSCI.1324-13.2013
  • Hendriks, G.-J., Gaidatzis, D., Aeschimann, F., & Großhans, H. (2014). Extensive oscillatory gene expression during C. elegans larval development. Molecular Cell, 53(3), 380–392. doi:10.1016/j.molcel.2013.12.013
  • Hill, A.J., Mansfield, R., Lopez, J.M., Raizen, D.M., & Van Buskirk, C. (2014). Cellular stress induces a protective sleep-like state in C. elegans. Current Biology: CB, 24(20), 2399–2405. doi:10.1016/j.cub.2014.08.040
  • Hofer, S., Dircksen, H., Tollback, P., & Homberg, U. (2005). Novel insect orcokinins: Characterization and neuronal distribution in the brains of selected dicondylian insects. The Journal of Comparative Neurology, 490(1), 57–71. doi:10.1002/cne.20650
  • Hofer, S., & Homberg, U. (2006). Evidence for a role of orcokinin-related peptides in the circadian clock controlling locomotor activity of the cockroach Leucophaea maderae. The Journal of Experimental Biology, 209(Pt 14), 2794–2803. doi:10.1242/jeb.02307
  • Hofer, S., & Homberg, U. (2006). Orcokinin immunoreactivity in the accessory medulla of the cockroach Leucophaea maderae. Cell and Tissue Research, 325(3), 589–600. doi:10.1007/s00441-006-0155-y
  • Iannacone, M.J., Beets, I., Lopes, L.E., Churgin, M.A., Fang-Yen, C., Nelson, M.D., … Raizen, D.M. (2017). The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans. eLife, 6, e19837. doi:10.7554/eLife.19837
  • Imeri, L., & Opp, M.R. (2009). How (and why) the immune system makes us sleep. Nature Reviews. Neuroscience, 10(3), 199–210. doi:10.1038/nrn2576
  • Jekely, G. (2013). Global view of the evolution and diversity of metazoan neuropeptide signaling. Proceedings of the National Academy of Sciences of the United States of America, 110(21), 8702–8707. doi:10.1073/pnas.1221833110
  • Kim, C.H., Go, H.J., Oh, H.Y., Elphick, M.R., & Park, N.G. (2018). Identification of evolutionarily conserved residues required for the bioactivity of a pedal peptide/orcokinin-type neuropeptide. Peptides, 103, 10–18. doi:10.1016/j.peptides.2018.03.007
  • Kim, C.H., Kim, E.J., Go, H.J., Oh, H.Y., Lin, M., Elphick, M.R., & Park, N.G. (2016). Identification of a novel starfish neuropeptide that acts as a muscle relaxant. Journal of Neurochemistry, 137(1), 33–45. doi:10.1111/jnc.13543
  • Konietzka, J., Fritz, M., Spiri, S., McWhirter, R., Leha, A., Palumbos, S., … Bringmann, H. (2020). Epidermal growth factor signaling promotes sleep through a combined series and parallel neural circuit. Current Biology: CB, 30(1), 1–16e13. doi:10.1016/j.cub.2019.10.048
  • Koziol, U. (2018). Precursors of neuropeptides and peptide hormones in the genomes of tardigrades. General and Comparative Endocrinology, 267, 116–127. doi:10.1016/j.ygcen.2018.06.012
  • Kramer, A., Yang, F.C., Snodgrass, P., Li, X., Scammell, T.E., Davis, F.C., & Weitz, C.J. (2001). Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science (New York, N.Y.), 294(5551), 2511–2515. doi:10.1126/science.1067716
  • Kushikata, T., Fang, J., Chen, Z., Wang, Y., & Krueger, J.M. (1998). Epidermal growth factor enhances spontaneous sleep in rabbits. The American Journal of Physiology, 275(2), R509–R514. doi:10.1152/ajpregu.1998.275.2.R509
  • Lee, D.A., Andreev, A., Truong, T.V., Chen, A., Hill, A.J., Oikonomou, G., … Prober, D.A. (2017). Genetic and neuronal regulation of sleep by neuropeptide VF. eLife, 6, e25727. doi:10.7554/eLife.25727
  • Lenz, O., Xiong, J., Nelson, M.D., Raizen, D.M., & Williams, J.A. (2015). FMRFamide signaling promotes stress-induced sleep in Drosophila. Brain, Behavior, and Immunity, 47, 141–148. doi:10.1016/j.bbi.2014.12.028
  • Li, L., Pulver, S.R., Kelley, W.P., Thirumalai, V., Sweedler, J.V., & Marder, E. (2002). Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. The Journal of Comparative Neurology, 444(3), 227–244. doi:10.1002/cne.10139
  • Lin, M., Egertova, M., Zampronio, C.G., Jones, A.M., & Elphick, M.R. (2018). Functional characterization of a second pedal peptide/orcokinin-type neuropeptide signaling system in the starfish Asterias rubens. The Journal of Comparative Neurology, 526(5), 858–876. doi:10.1002/cne.24371
  • Lloyd, P.E., & Connolly, C.M. (1989). Sequence of pedal peptide: A novel neuropeptide from the central nervous system of Aplysia. The Journal of Neuroscience, 9(1), 312–317. doi:10.1523/JNEUROSCI.09-01-00312.1989
  • MacWilliam, D., Arensburger, P., Higa, J., Cui, X., & Adams, M.E. (2015). Behavioral and genomic characterization of molt-sleep in the tobacco hornworm, Manduca sexta. Insect Biochemistry and Molecular Biology, 62, 154–167. doi:10.1016/j.ibmb.2015.01.012
  • Mello, C., & Fire, A. (1995). DNA transformation. Methods in Cell Biology, 48, 451–482. doi:10.1016/S0091-679X(08)61399-0
  • Nath, R.D., Chow, E.S., Wang, H., Schwarz, E.M., & Sternberg, P.W. (2016). C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Current Biology: CB, 26(18), 2446–2455. doi:10.1016/j.cub.2016.07.048
  • Nathoo, A.N., Moeller, R.A., Westlund, B.A., & Hart, A.C. (2001). Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 14000–14005. doi:10.1073/pnas.241231298
  • Nelson, M.D., & Fitch, D.H. (2011). Overlap extension PCR: An efficient method for transgene construction. Methods in Molecular Biology (Clifton, N.J.), 772, 459–470. doi:10.1007/978-1-61779-228-1_27
  • Nelson, M.D., Janssen, T., York, N., Lee, K.H., Schoofs, L., & Raizen, D.M. (2015). FRPR-4 is a G-protein coupled neuropeptide receptor that regulates behavioral quiescence and posture in Caenorhabditis elegans. PLoS One, 10(11), e0142938. doi:10.1371/journal.pone.0142938
  • Nelson, M.D., Lee, K.H., Churgin, M.A., Hill, A.J., Van Buskirk, C., Fang-Yen, C., & Raizen, D.M. (2014). FMRFamide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Current Biology, 24(20), 2406–2410. doi:10.1016/j.cub.2014.08.037
  • Nelson, M.D., Trojanowski, N.F., George-Raizen, J.B., Smith, C.J., Yu, C.C., Fang-Yen, C., & Raizen, D.M. (2013). The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nature Communications, 4, 2846. doi:10.1038/ncomms3846
  • Notredame, C., Higgins, D.G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), 205–217. doi:10.1006/jmbi.2000.4042
  • Paix, A., Folkmann, A., & Seydoux, G. (2017). Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods (San Diego, California), 121–122, 86–93. doi:10.1016/j.ymeth.2017.03.023
  • Raizen, D.M., Zimmerman, J.E., Maycock, M.H., Ta, U.D., You, Y.J., Sundaram, M.V., & Pack, A.I. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451(7178), 569–572. doi:10.1038/nature06535
  • Ramon, F., Hernandez-Falcon, J., Nguyen, B., & Bullock, T.H. (2004). Slow wave sleep in crayfish. Proceedings of the National Academy of Sciences of the United States of America, 101(32), 11857–11861. doi:10.1073/pnas.0402015101
  • Ramon, F., Mendoza-Angeles, K., & Hernandez-Falcon, J. (2012). Sleep in invertebrates: Crayfish. Frontiers in Bioscience (Scholar Edition), 4, 1190–1200. doi:10.2741/s325
  • Reinecke, J., Buckner, J.S., & Grugel, S.R. (1980). Life cycle of laboratory-reared tobacco hornworms, Manduca sexta, a study of development and behavior, using time-lapse cinematography. The Biological Bulletin, 158(1), 129–140. doi:10.2307/1540764
  • Renn, S.C., Park, J.H., Rosbash, M., Hall, J.C., & Taghert, P.H. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell, 99(7), 791–802. doi:10.1016/S0092-8674(00)81676-1
  • Rowe, M.L., & Elphick, M.R. (2012). The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. General and Comparative Endocrinology, 179(3), 331–344. doi:10.1016/j.ygcen.2012.09.009
  • Semmens, D.C., & Elphick, M.R. (2017). The evolution of neuropeptide signalling: Insights from echinoderms. Briefings in Functional Genomics, 16(5), 288–298. doi:10.1093/bfgp/elx005
  • Sherlekar, A.L., Janssen, A., Siehr, M.S., Koo, P.K., Caflisch, L., Boggess, M., & Lints, R. (2013). The C. elegans male exercises directional control during mating through cholinergic regulation of sex-shared command interneurons. PLoS One, 8(4), e60597. doi:10.1371/journal.pone.0060597
  • Singh, R.N., & Sulston, J.E. (1978). Some observations on moulting in Caenorhabditis elegans. Nematologica, 24(1), 63–71. doi:10.1163/187529278X00074
  • Skiebe, P., Dreger, M., Meseke, M., Evers, J.F., & Hucho, F. (2002). Identification of orcokinins in single neurons in the stomatogastric nervous system of the crayfish, Cherax destructor. The Journal of Comparative Neurology, 444(3), 245–259. doi:10.1002/cne.10145
  • Stangier, J., Hilbich, C., Burdzik, S., & Keller, R. (1992). Orcokinin: A novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides, 13(5), 859–864. doi:10.1016/0196-9781(92)90041-Z
  • Stinchcomb, D.T., Shaw, J.E., Carr, S.H., & Hirsh, D. (1985). Extrachromosomal DNA transformation of Caenorhabditis elegans. Molecular and Cellular Biology, 5(12), 3484–3496. doi:10.1128/mcb.5.12.3484
  • Szuperak, M., Churgin, M.A., Borja, A.J., Raizen, D.M., Fang-Yen, C., & Kayser, M.S. (2018). A sleep state in Drosophila larvae required for neural stem cell proliferation. eLife, 7, e33220. doi:10.7554/eLife.33220
  • Taylor, S.R., Santpere, G., Reilly, M., Glenwinkel, L., Poff, A., McWhirter, R., … Miller, D.M. (2019). Expression profiling of the mature C. elegans nervous system by single-cell RNA-sequencing. bioRxiv: 737577. doi:10.1101/737577
  • Thomas, J.H. (1990). Genetic analysis of defecation in Caenorhabditis elegans. Genetics, 124(4), 855–872.
  • Trojanowski, N.F., & Raizen, D.M. (2016). Call it worm sleep. Trends in Neurosciences, 39(2), 54–62. doi:10.1016/j.tins.2015.12.005
  • Turek, M., Besseling, J., Spies, J.P., Konig, S., & Bringmann, H. (2016). Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. eLife, 5, e12499. doi:10.7554/eLife.12499
  • Turek, M., Lewandrowski, I., & Bringmann, H. (2013). An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Current Biology: CB, 23(22), 2215–2223. doi:10.1016/j.cub.2013.09.028
  • Van Buskirk, C., & Sternberg, P.W. (2007). Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature Neuroscience, 10(10), 1300–1307. doi:10.1038/nn1981
  • Wang, H., Girskis, K., Janssen, T., Chan, J.P., Dasgupta, K., Knowles, J.A., … Sieburth, D. (2013). Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior. Current Biology: CB, 23(9), 746–754. doi:10.1016/j.cub.2013.03.049
  • Wang, H., & Sieburth, D. (2013). PKA controls calcium influx into motor neurons during a rhythmic behavior. PLoS Genetics, 9(9), e1003831. doi:10.1371/journal.pgen.1003831
  • Wright, J.C., Westh, P., & Ramlov, H. (2010). Cryptobiosis in tardigrada. Biological Reviews, 67 (1), 1–29. doi:10.1111/j.1469-185X.1992.tb01657.x
  • Wulff, J.P., Sierra, I., Sterkel, M., Holtof, M., Van Wielendaele, P., Francini, F., … Ons, S. (2017). Orcokinin neuropeptides regulate ecdysis in the hemimetabolous insect Rhodnius prolixus. Insect Biochemistry and Molecular Biology, 81, 91–102. doi:10.1016/j.ibmb.2017.01.003
  • Yamanaka, N., Hua, Y.J., Roller, L., Spalovska-Valachova, I., Mizoguchi, A., Kataoka, H., & Tanaka, Y. (2010). Bombyx prothoracicostatic peptides activate the sex peptide receptor to regulate ecdysteroid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2060–2065. doi:10.1073/pnas.0907471107
  • Yamanaka, N., Roller, L., Zitňan, D., Satake, H., Mizoguchi, A., Kataoka, H, Tanaka, Y. (2011). Bombyx orcokinins are brain-gut peptides involved in the neuronal regulation of ecdysteroidogenesis. The Journal of Comparative Neurology, 519(2), 238–246. doi:10.1002/cne.22517
  • Yasuda-Kamatani, Y., & Yasuda, A. (2000). Identification of orcokinin gene-related peptides in the brain of the crayfish Procambarus clarkii by the combination of MALDI-TOF and on-line capillary HPLC/Q-Tof mass spectrometries and molecular cloning. General and Comparative Endocrinology, 118(1), 161–172. doi:10.1006/gcen.1999.7453
  • Zahn, T.R., Macmorris, M.A., Dong, W., Day, R., & Hutton, J.C. (2001). IDA-1, a Caenorhabditis elegans homolog of the diabetic autoantigens IA-2 and phogrin, is expressed in peptidergic neurons in the worm. The Journal of Comparative Neurology, 429(1), 127–143. doi:10.1002/1096-9861(20000101)429:1<127::AID-CNE10>3.0.CO;2-H
  • Zitnan, D., Ross, L.S., Zitnanova, I., Hermesman, J.L., Gill, S. S., & Adams, M. E., (1999). Steroid induction of a peptide hormone gene leads to orchestration of a defined behavioral sequence. Neuron, 23(3), 523–535. doi:10.1016/S0896-6273(00)80805-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.