6,377
Views
8
CrossRef citations to date
0
Altmetric
Original Research Articles

Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the Drosophila adult gut

ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 33-44 | Received 05 Oct 2020, Accepted 01 Nov 2020, Published online: 16 Dec 2020

References

  • Beehler-Evans, R., & Micchelli, C. A. (2015). Generation of enteroendocrine cell diversity in midgut stem cell lineages. Development, 142(4), 654–664. doi:10.1242/dev.114959
  • Buchon, N., & Osman, D. (2015). All for one and one for all: Regionalization of the Drosophila intestine. Insect Biochemistry and Molecular Biology, 67, 2–8. doi:10.1016/j.ibmb.2015.05.015
  • Buchon, N., Osman, D., David, F. P., Fang, H. Y., Boquete, J. P., Deplancke, B., & Lemaitre, B. (2013). Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Reports, 3(5), 1725–1738. doi:10.1016/j.celrep.2013.04.001
  • Cao, C., & Brown, M. (2001). Localization of an insulin-like peptide in brains of two flies. Cell and Tissue Research, 304(2), 317–321. doi:10.1007/s004410100367
  • Chen, J., Kim, S. M., & Kwon, J.Y. (2016). A systematic analysis of Drosophila regulatory peptide expression in enteroendocrine cells. Molecules and Cells, 39(4), 358–366. doi:10.14348/molcells.2016.0014
  • Cognigni, P., Bailey, A.P., & Miguel-Aliaga, I. (2011). Enteric neurons and systemic signals couple nutritional and reproductive status with intestinal homeostasis. Cell Metabolism, 13(1), 92–104. doi:10.1016/j.cmet.2010.12.010
  • Colombani, J., & Andersen, D.S. (2020). The Drosophila gut: A gatekeeper and coordinator of organism fitness and physiology. Wiley Interdisciplinary Reviews: Developmental Biology, e378. doi:10.1002/wdev.378
  • Dionne, H., Hibbard, K.L., Cavallaro, A., Kao, J.C., & Rubin, G.M. (2018). Genetic reagents for making split-GAL4 lines in Drosophila. Genetics, 209(1), 31–35. doi:10.1534/genetics.118.300682
  • Driver, I., & Ohlstein, B. (2014). Specification of regional intestinal stem cell identity during Drosophila metamorphosis. Development, 141(9), 1848–1856. doi:10.1242/dev.104018
  • Dus, M., Lai, J.S.-Y., Gunapala, K.M., Min, S., Tayler, T.D., Hergarden, A.C., … Suh, G.S.B. (2015). Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1), 139–151. doi:10.1016/j.neuron.2015.05.032
  • Guo, X., Yin, C., Yang, F., Zhang, Y., Huang, H., Wang, J., … Xi, R. (2019). The cellular diversity and transcription factor code of Drosophila enteroendocrine cells. Cell Reports, 29(12), 4172–4185. doi:10.1016/j.celrep.2019.11.048
  • Guo, Z., Lucchetta, E., Rafel, N., & Ohlstein, B. (2016). Maintenance of the adult Drosophila intestine: All roads lead to homeostasis. Current Opinion in Genetics & Development, 40, 81–86. doi:10.1016/j.gde.2016.06.009
  • Hung, R.-J., Hu, Y., Kirchner, R., Liu, Y., Xu, C., Comjean, A., … Perrimon, N. (2020). A cell atlas of the adult Drosophila midgut. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1514–1523. doi:10.1073/pnas.1916820117
  • Jenett, A., Rubin, G.M., Ngo, T.-T.B., Shepherd, D., Murphy, C., Dionne, H., … Zugates, C.T. (2012). A GAL4-driver line resource for Drosophila neurobiology. Cell Reports, 2(4), 991–1001. doi:10.1016/j.celrep.2012.09.011
  • Kuraishi, T., Kenmoku, H., & Kurata, S. (2015). From mouth to anus: Functional and structural relevance of enteric neurons in the Drosophila melanogaster gut. Insect Biochemistry and Molecular Biology, 67, 21–26. doi:10.1016/j.ibmb.2015.07.003
  • Lee, G., & Park, J. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1), 311–323. doi:10.1534/genetics.167.1.311
  • Luan, H., Peabody, N.C., Vinson, C.R., & White, B.H. (2006). Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron, 52(3), 425–436. doi:10.1016/j.neuron.2006.08.028
  • Manning, L., Heckscher, E.S., Purice, M.D., Roberts, J., Bennett, A.L., Kroll, J.R., … Doe, C.Q. (2012). A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Reports, 2(4), 1002–1013. doi:10.1016/j.celrep.2012.09.009
  • Marianes, A., & Spradling, A.C. (2013). Physiological and stem cell compartmentalization within the Drosophila midgut. eLife, 2, e00886. doi:10.7554/eLife.00886
  • Micchelli, C.A., & Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature, 439(7075), 475–479. doi:10.1038/nature04371
  • Miguel-Aliaga, I., Jasper, H., & Lemaitre, B. (2018). Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics, 210(2), 357–396. doi:10.1534/genetics.118.300224
  • Miguel-Aliaga, I., Thor, S., & Gould, A. (2008). Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLOS Biology, 6(3), e58. doi:10.1371/journal.pbio.0060058
  • Ohlstein, B., & Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature, 439(7075), 470–474. doi:10.1038/nature04333
  • Olds, W., & Xu, T. (2014). Regulation of food intake by mechanosensory ion channels in enteric neurons. eLife, 3, e04402. doi:10.7554/eLife.04402
  • Park, J.H., & Kwon, J.Y. (2011). Heterogeneous Expression of Drosophila Gustatory Receptors in Enteroendocrine Cells. PLoS ONE, 6(12): e29022. doi:10.1371/journal.pone.0029022
  • Perea, D., Guiu, J., Hudry, B., Konstantinidou, C., Milona, A., Hadjieconomou, D., … Miguel-Aliaga, I. (2017). Ret receptor tyrosine kinase sustains proliferation and tissue maturation in intestinal epithelia. The EMBO Journal, 36(20), 3029–3045. doi:10.15252/embj.201696247
  • Pfeiffer, B. D., Jenett, A., Hammonds, A. S., Ngo, T. T., Misra, S., Murphy, C., … Rubin, G. M. (2008). Tools for neuroanatomy and neurogenetics in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105 (28), 9715–9720. doi:10.1073/pnas.0803697105
  • Redhai, S., Pilgrim, C., Gaspar, P., Giesen, L. v., Lopes, T., Riabinina, O., … Miguel-Aliaga, I. (2020). An intestinal zinc sensor regulates food intake and developmental growth. Nature, 580(7802), 263–268. doi:10.1038/s41586-020-2111-5
  • Singh, S. R., Zeng, X., Zheng, Z., & Hou, S. X. (2011). The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle (Georgetown, Tex.).), 10(7), 1109–1120. doi:10.4161/cc.10.7.14830
  • Talsma, A. D., Christov, C. P., Terriente-Felix, A., Linneweber, G. A., Perea, D., Wayland, M., … Miguel-Aliaga, I. (2012). Remote control of renal physiology by the intestinal neuropeptide pigment-dispersing factor in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109 (30), 12177–12182. doi:10.1073/pnas.1200247109
  • Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J. M., Lemaitre, B., … Imler, J. L. (2000). Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 13(5), 737–748. doi:10.1016/S1074-7613(00)00072-8
  • Veenstra, J. A., & Ida, T. (2014). More Drosophila enteroendocrine peptides: Orcokinin B and the CCHamides 1 and 2. Cell Tissue Res, 357(3), 607–621. doi:10.1007/s00441-014-1880-2
  • Zeng, X., Chauhan, C., & Hou, S. X. (2010). Characterization of midgut stem cell- and enteroblast-specific Gal4 lines in Drosophila. Genesis (New York, N.Y. : 2000)), 48(10), 607–611. doi:10.1002/dvg.20661
  • Zeng, X., & Hou, S. X. (2015). Enteroendocrine cells are generated from stem cells through a distinct progenitor in the adult Drosophila posterior midgut. Development (Cambridge, England)), 142(4), 644–653. doi:10.1242/dev.113357
  • Zhao, X., & Karpac, J. (2020). The Drosophila midgut and the systemic coordination of lipid-dependent energy homeostasis. Current Opinion in Insect Science, 41, 100–105. doi:10.1016/j.cois.2020.07.003