571
Views
3
CrossRef citations to date
0
Altmetric
Original Research Articles

Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea

ORCID Icon, , , , ORCID Icon, , , , & show all
Pages 45-57 | Received 17 Jan 2020, Accepted 15 Mar 2021, Published online: 07 Apr 2021

References

  • Abbott, S., Hughes, L., Bauer, C., Salvi, R., & Caspary, D. (1999). Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience, 93, 1375–1381. doi:10.1016/s0306-4522(99)00300-0
  • Ahmed, H., Dennis, J., Badran, O., Ismail, M., Ballal, S., Ashoor, A., & Jerwood, D. (2001). High-frequency (10-18 kHz) hearing thresholds: Reliability, and effects of age and occupational noise exposure . Occupational Medicine, 51, 245–258. doi:10.1093/occmed/51.4.245
  • Akk, G., Bracamontes, J., & Steinbach, J.H. (2001). Pregnenolone sulfate block of GABA(A) receptors: mechanism and involvement of a residue in the M2 region of the alpha subunit. The Journal of Physiology, 532, 673–684. doi:10.1111/j.1469-7793.2001.0673e.x
  • Bledsoe, J.S., Nagase, S., Miller, J.M., & Altschuler, R.A. (1995). Deafness-induced plasticity in the mature central auditory system. Neuroreport, 7(1), 225–229. doi:10.1097/00001756-199512000-00054
  • Brickner, D., & Carel, R. (2005). Annual rate of development of noise induced hearing loss in exposed workers. Harefuah, 144, 692–695, 751.
  • Brozoski, T.J., Spires, T.J.D., & Bauer, C.A. (2007). Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. Journal of the Association for Research in Otolaryngology, 8(1), 105–118. doi:10.1007/s10162-006-0067-2
  • Burbaeva, G.S., Boksha, I., Tereshkina, E., Savushkina, O., Prokhorova, T., & Vorobyeva, E. (2014). Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer’s disease: Phosphate-activated glutaminase and glutamic acid decarboxylase. The Cerebellum, 13, 607–615. doi:10.1007/s12311-014-0573-4
  • Canlon, B., Meltser, I., Johansson, P., & Tahera, Y. (2007). Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hearing Research, 226, 61–69. doi:10.1016/j.heares.2006.05.009
  • Caspary, D., Holder, T., Hughes, L., Milbrandt, J., McKernan, R., & Naritoku, D. (1999). Age-related changes in GABAA receptor subunit composition and function in rat auditory system. Neuroscience, 93(1), 307–312. doi:10.1016/S0306-4522(99)00121-9
  • Chia, W.-J., Jenner, A.M., Farooqui, A.A., & Ong, W.-Y. (2008). Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury. Experimental Brain Research, 186(1), 143–149. doi:10.1007/s00221-007-1209-4
  • Compagnone, N.A., & Mellon, S.H. (2000). Neurosteroids: Biosynthesis and function of these novel neuromodulators. Frontiers in Neuroendocrinology, 21(1), 1–56. 10.1006/frne.1999.0188. doi:10.1006/frne.1999.0188
  • Daniel, E. (2007). Noise and hearing loss: A review. The Journal of School Health, 77, 225–231. doi:10.1111/j.1746-1561.2007.00197.x
  • Darrah, S.D., Miller, M.A., Ren, D., Hoh, N.Z., Scanlon, J.M., Conley, Y.P., & Wagner, A.K. (2013). Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Research, 103, 180–194. doi:10.1016/j.eplepsyres.2012.07.006
  • Dong, S., Mulders, W.H., Rodger, J., Woo, S., & Robertson, D. (2010). Acoustic trauma evokes hyperactivity and changes in gene expression in guinea‐pig auditory brainstem. European Journal of Neuroscience, 31, 1616–1628. doi:10.1111/j.1460-9568.2010.07183.x
  • Dubois, C.J., Lachamp, P.M., Sun, L., Mishina, M., & Liu, S.J. (2016). Presynaptic GluN2D receptors detect glutamate spillover and regulate cerebellar GABA release. Journal of Neurophysiology, 115(1), 271–285. doi:10.1152/jn.00687.2015
  • Endele, S., Rosenberger, G., Geider, K., Popp, B., Tamer, C., Stefanova, I., … Pientka, F.K. (2010). Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nature Genetics, 42, 1021–1026. doi:10.1038/ng.677
  • Erlander, M.G., & Tobin, A.J. (1991). The structural and functional heterogeneity of glutamic acid decarboxylase: A review. Neurochemical Research, 16, 215–226. doi:10.1007/BF00966084
  • Erlander, M.G., Tillakaratne, N.J., Feldblum, S., Patel, N., & Tobin, A.J. (1991). Two genes encode distinct glutamate decarboxylases. Neuron, 7(1), 91–100. doi:10.1016/0896-6273(91)90077-d
  • Froemke, R.C. (2015). Plasticity of cortical excitatory-inhibitory balance. Annual Review of Neuroscience, 38, 195–219. doi:10.1146/annurev-neuro-071714-034002
  • Garrett, K.M., Duman, R.S., Saito, N., Blume, A.J., Vitek, M.P., & Tallman, J.F. (1988). Isolation of a cDNA clone for the alpha subunit of the human GABA-A receptor. Biochemical and Biophysical Research Communications, 156, 1039–1045. doi:10.1016/s0006-291x(88)80949-5
  • Gates, G.A., Schmid, P., Kujawa, S.G., Nam, B-H., & D’Agostino, R. (2000). Longitudinal threshold changes in older men with audiometric notches. Hearing Research, 141, 220–228. doi:10.1016/S0378-5955(99)00223-3
  • Green, A.R., Hainsworth, A.H., & Jackson, D.M. (2000). GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology, 39, 1483–1494. doi:10.1016/s0028-3908(99)00233-6
  • Guerriero, R.M., Giza, C.C., & Rotenberg, A. (2015). Glutamate and GABA imbalance following traumatic brain injury. Current Neurology and Neuroscience Reports, 15, 27. doi:10.1007/s11910-015-0545-1
  • Guitton, M.J., & Dudai, Y. (2007). Blockade of cochlear NMDA receptors prevents long-term tinnitus during a brief consolidation window after acoustic trauma. Neural Plasticity, 2007, 80904. doi:10.1155/2007/80904
  • Hakuba, N., Koga, K., Gyo, K., Usami, S.I., & Tanaka, K. (2000). Exacerbation of noise-induced hearing loss in mice lacking the glutamate transporter GLAST. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20, 8750–8753. doi:10.1523/JNEUROSCI.20-23-08750.2000
  • Hirose, K., & Liberman, M.C. (2003). Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. Journal of the Association for Research in Otolaryngology: JARO, 4, 339–352. doi:10.1007/s10162-002-3036-4
  • Hirunsatit, R., George, E.D., Lipska, B.K., Elwafi, H.M., Sander, L., Yrigollen, C.M., … Mane, S. (2009). Twenty-one-base-pair insertion polymorphism creates an enhancer element and potentiates SLC6A1 GABA transporter promoter activity. Pharmacogenetics and Genomics, 19(1), 53–65. doi:10.1097/FPC.0b013e328318b21a
  • Holt, A.G., Asako, M., Lomax, C.A., MacDonald, J.W., Tong, L., Lomax, M.I., & Altschuler, R.A. (2005). Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity. Journal of Neurochemistry, 93, 1069–1086. doi:10.1111/j.1471-4159.2005.03090.x
  • Hu, B.H., Henderson, D., & Nicotera, T.M. (2002). Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hearing Research, 166, 62–71. doi:10.1016/S0378-5955(02)00286-1
  • John, M.E., John, M.C., Ashley, P., MacDonald, R.J., Simpson, E.R., & Waterman, M.R. (1984). Identification and characterization of cDNA clones specific for cholesterol side-chain cleavage cytochrome P-450. Proceedings of the National Academy of Sciences, 81, 5628–5632. doi:10.1073/pnas.81.18.5628
  • Juiz, J.M., Albin, R.L., Helfert, R.H., & Altschuler, R.A. (1994). Distribution of GABAA and GABAB binding sites in the cochlear nucleus of the guinea pig. Brain Research, 639, 193–201. doi:10.1016/0006-8993(94)91730-2
  • Kaneko, T., & Mizuno, N. (1994). Glutamate-synthesizing enzymes in GABAergic neurons of the neocortex: a double immunofluorescence study in the rat. Neuroscience, 61, 839–849. doi:10.1016/0306-4522(94)90407-3]
  • Kimoto, T., Tsurugizawa, T., Ohta, Y., Makino, J. y., Tamura, H-o., Hojo, Y., … Kawato, S. (2001). Neurosteroid synthesis by cytochrome p450-containing systems localized in the rat brain hippocampal neurons: N-methyl-D-aspartate and calcium-dependent synthesis. Endocrinology, 142, 3578–3589. doi:10.1210/endo.142.8.8327
  • Kujawa, S.G., & Liberman, M.C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330, 191–199. doi:10.1016/j.heares.2015.02.009
  • Kumar, A., Zou, L., Yuan, X., Long, Y., & Yang, K. (2002). N-methyl-D-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. Journal of Neuroscience Research, 67, 781–786. doi:10.1002/jnr.10181
  • Liu, C., Xu, T., Liu, X., Huang, Y., Wang, H., Luo, B., & Sun, J. (2018). Acoustic trauma changes the parvalbumin-positive neurons in rat auditory cortex. Neural Plasticity, 2018, 9828070. doi:10.1155/2018/9828070
  • Liu, Y., Wong, T.P., Aarts, M., Rooyakkers, A., Liu, L., Lai, T.W., … Craig, A.M. (2007). NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. Journal of Neuroscience, 27, 2846–2857. doi:10.1523/JNEUROSCI.0116-07.2007
  • Lynch, D.S., Chelban, V., Vandrovcova, J., Pittman, A., Wood, N.W., & Houlden, H. (2018). GLS loss of function causes autosomal recessive spastic ataxia and optic atrophy. Annals of Clinical and Translational Neurology, 5, 216–221. doi:10.1002/acn3.522
  • Maison, S.F., Casanova, E., Holstein, G.R., Bettler, B., & Liberman, M.C. (2009). Loss of GABAB receptors in cochlear neurons: threshold elevation suggests modulation of outer hair cell function by type II afferent fibers. Journal of the Association for Research in Otolaryngology: JARO, 10(1), 50–63. doi:10.1007/s10162-008-0138-7
  • Majewska, M.D. (1992). Neurosteroids: endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Progress in Neurobiology, 38, 379–395. doi:10.1016/0301-0082(92)90025-A
  • Malayev, A., Gibbs, T.T., & Farb, D.H. (2002). Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. British Journal of Pharmacology, 135, 901–909. doi:10.1038/sj.bjp.0704543
  • Manns, I., Mainville, L., & Jones, B. (2001). Evidence for glutamate, in addition to acetylcholine and GABA, neurotransmitter synthesis in basal forebrain neurons projecting to the entorhinal cortex. Neuroscience, 107, 249–263. doi:10.1016/S0306-4522(01)00302-5
  • Manohar, S., Dahar, K., Adler, H.J., Dalian, D., & Salvi, R. (2016). Noise-induced hearing loss: Neuropathic pain via Ntrk1 signaling. Molecular and Cellular Neurosciences, 75, 101–112. doi:10.1016/j.mcn.2016.07.005
  • Matta, J.A., Ashby, M.C., Sanz-Clemente, A., Roche, K.W., & Isaac, J.T. (2011). mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch. Neuron, 70, 339–351. doi:10.1016/j.neuron.2011.02.045
  • Milbrandt, J., Holder, T., Wilson, M., Salvi, R., & Caspary, D. (2000). GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hearing Research, 147, 251–260. doi:10.1016/S0378-5955(00)00135-0
  • Mossop, J., Wilson, M., Caspary, D., & Moore, D. (2000). Down-regulation of inhibition following unilateral deafening. Hearing Research, 147, 183–187. doi:10.1016/s0378-5955(00)00054-x
  • Nordang, L., Cestreicher, E., Arnold, W., & Anniko, M. (2000). Glutamate is the afferent neurotransmitter in the human cochlea. Acta Oto-Laryngologica, 120, 359–362. doi:10.1080/000164800750000568
  • Ohinata, Y., Miller, J.M., & Schacht, J. (2003). Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Research, 966, 265–273. doi:10.1016/S0006-8993(02)04205-1
  • Ohlemiller, K.K., Dahl, A.R., & Gagnon, P.M. (2010). Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. Journal of the Association for Research in Otolaryngology: JARO, 11, 605–623. doi:10.1007/s10162-010-0228-1
  • Ottersen, O.P., Takumi, Y., Matsubara, A., Landsend, A.S., Laake, J.H., & Usami, S-i. (1998). Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear. Progress in Neurobiology, 54, 127–148. doi:10.1016/s0301-0082(97)00054-3
  • Prusiner, S.B. (1981). Disorders of glutamate metabolism and neurological dysfunction. Annual Review of Medicine, 32(1), 521–542. doi:10.1146/annurev.me.32.020181.002513
  • Rao, V.L.R., Dogan, A., Todd, K.G., Bowen, K.K., Kim, B.-T., Rothstein, J.D., & Dempsey, R.J. (2001). Antisense knockdown of the glial glutamate transporter GLT-1, but not the neuronal glutamate transporter EAAC1, exacerbates transient focal cerebral ischemia-induced neuronal damage in rat brain. The Journal of Neuroscience, 21, 1876–1883. doi:10.1523/JNEUROSCI.21-06-01876.2001
  • Raza, A., Milbrandt, J.C., Arneric, S.P., & Caspary, D.M. (1994). Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function. Hearing Research, 77, 221–230. doi:10.1016/0378-5955(94)90270-4
  • Robertson, D. (1983). Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hearing Research, 9, 263–278. doi:10.1016/0378-5955(83)90031-X
  • Ruel, J., Chen, C., Pujol, R., Bobbin, R.P., & Puel, J.L. (1999). AMPA-preferring glutamate receptors in cochlear physiology of adult guinea-pig. The Journal of Physiology, 518, 667–680. doi:10.1111/j.1469-7793.1999.0667p.x
  • Sahakitrungruang, T., Tee, M.K., Blackett, P.R., & Miller, W.L. (2011). Partial defect in the cholesterol side-chain cleavage enzyme P450scc (CYP11A1) resembling nonclassic congenital lipoid adrenal hyperplasia. The Journal of Clinical Endocrinology and Metabolism, 96, 792–798. doi:10.1210/jc.2010-1828
  • Schumann, J., Alexandrovich, G.A., Biegon, A., & Yaka, R. (2008). Inhibition of NR2B phosphorylation restores alterations in NMDA receptor expression and improves functional recovery following traumatic brain injury in mice. Journal of Neurotrauma, 25, 945–957. doi:10.1089/neu.2008.0521
  • Seki, S., & Eggermont, J.J. (2003). Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hearing Research, 180, 28–38. doi:10.1016/s0378-5955(03)00074-1
  • Shashidharan, P., Wittenberg, I., & Plaitakis, A. (1994). Molecular cloning of human brain glutamate/aspartate transporter II. Biochimica et Biophysica Acta (Bba)[Biomembranes], 1191, 393–396. doi:10.1016/0005-2736(94)90192-9
  • Shi, L., Chang, Y., Li, X., Aiken, S., Liu, L., & Wang, J. (2016). Cochlear synaptopathy and noise-induced hidden hearing loss. Neural Plasticity, 2016, 6143164. doi:10.1155/2016/6143164
  • Shih, M.M.-C., Hsu, H.-J., Lan, H.-C., Weng, J.-H., Chien, Y., Hu, M.-C., & Chung, B-C. (2014). Steroidogenic cytochrome P450 gene CYP11A1: Functions and regulation (fifty years of cytochrome P450 research (pp. 259–275). Tokyo: Springer.
  • Sigel, A., Sigel, H., & Sigel, R.K. (2007). The ubiquitous roles of cytochrome P450 proteins (Vol. 10). England: John Wiley & Sons.
  • Singh, R., Saxena, R., & Varshney, S. (2009). Early detection of noise induced hearing loss by using ultra high frequency audiometry. Int J Otorhinolaryngol, 10(2), 1–5.
  • Steinbach, S., & Lutz, J. (2007). Glutamate induces apoptosis in cultured spiral ganglion explants. Biochemical and Biophysical Research Communications, 357(1), 14–19. doi:10.1016/j.bbrc.2007.03.098
  • Suneja, S., Potashner, S., & Benson, C. (1998). Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Experimental Neurology, 151(2), 273–288. doi:10.1006/exnr.1998.6812
  • Tabuchi, K., Murashita, H., Tobita, T., Oikawa, K., Tsuji, S., Uemaetomari, I., & Hara, A. (2005). Dehydroepiandrosterone sulfate reduces acoustic injury of the guinea-pig cochlea. Journal of Pharmacological Sciences., 0510050005–0510050005.
  • Tabuchi, K., Nakamagoe, M., Nishimura, B., Hayashi, K., Nakayama, M., & Hara, A. (2011). Protective effects of corticosteroids and neurosteroids on cochlear injury. Medicinal Chemistry, 7(2), 140–144. doi:10.2174/157340611794859334
  • Tahera, Y., Meltser, I., Johansson, P., Bian, Z., Stierna, P., Hansson, A.C., & Canlon, B. (2006). NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma. Journal of Neuroscience Research, 83, 1066–1076. doi:10.1002/jnr.20795
  • Takamori, S., Malherbe, P., Broger, C., & Jahn, R. (2002). Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Reports, 3, 798–803. doi:10.1093/embo-reports/kvf159
  • Wang, K., Ye, L., Lu, H., Chen, H., Zhang, Y., Huang, Y., & Zheng, J.C. (2017). TNF-α promotes extracellular vesicle release in mouse astrocytes through glutaminase. Journal of Neuroinflammation, 14(1), 87. doi:10.1186/s12974-017-0853-2
  • Wang, M. (2011). Neurosteroids and GABA-A receptor function. Frontiers in Endocrinology, 2, 44. doi:10.3389/fendo.2011.00044
  • Wang, Y., Huang, Y., Zhao, L., Li, Y., & Zheng, J. (2014). Glutaminase 1 is essential for the differentiation, proliferation, and survival of human neural progenitor cells. Stem Cells Dev, 23, 2782–2790. doi:10.1089/scd.2014.0022
  • Wilborn, T.W., Comer, K.A., Dooley, T.P., Reardon, I.M., Heinrikson, R.L., & Falany, C.N. (1993). Sequence analysis and expression of the cDNA for the phenol-sulfating form of human liver phenol sulfotransferase. Molecular Pharmacology, 43(1), 70–77.
  • Wu, F.S., Gibbs, T.T., & Farb, D.H. (1991). Pregnenolone sulfate: a positive allosteric modulator at the N-methyl-D-aspartate receptor. Molecular Pharmacology, 40, 333–336. http://www.ncbi.nlm.nih.gov/pubmed/1654510
  • Xue, J.-G., Masuoka, T., Gong, X.-D., Chen, K.-S., Yanagawa, Y., Law, S.A., & Konishi, S. (2011). NMDA receptor activation enhances inhibitory GABAergic transmission onto hippocampal pyramidal neurons via presynaptic and postsynaptic mechanisms. Journal of Neurophysiology, 105, 2897–2906. doi:10.1152/jn.00287.2010
  • Yang, C.-H., Schrepfer, T., & Schacht, J. (2015). Age-related hearing impairment and the triad of acquired hearing loss. Frontiers in Cellular Neuroscience, 9, 276. doi:10.3389/fncel.2015.00276
  • Yang, W.P., Henderson, D., Hu, B.H., & Nicotera, T.M. (2004). Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise. Hearing Research, 196, 69–76. doi:10.1016/j.heares.2004.04.015
  • Yoshida, N., Kristiansen, A., & Liberman, M.C. (1999). Heat stress and protection from permanent acoustic injury in mice. The Journal of Neuroscience, 19, 10116–10124. doi:10.1523/JNEUROSCI.19-22-10116.1999
  • Zare, S., Nassiri, P., Monazzam, M.R., Pourbakht, A., Azam, K., & Golmohammadi, T. (2015). Evaluation of distortion product otoacoustic emissions (DPOAEs) among workers at an industrial company exposed to different industrial noise levels in 2014. Electronic Physician, 7, 1126.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.