511
Views
2
CrossRef citations to date
0
Altmetric
Original Research Articles

PTK2 regulates tau-induced neurotoxicity via phosphorylation of p62 at Ser403

, , , , , ORCID Icon & ORCID Icon show all
Pages 10-19 | Received 28 Apr 2022, Accepted 12 Aug 2022, Published online: 24 Aug 2022

References

  • Armendáriz, B.G., Masdeu, M. d M., Soriano, E., Ureña, J.M., & Burgaya, F. (2014). The diverse roles and multiple forms of focal adhesion kinase in brain. The European Journal of Neuroscience, 40(11), 3573–3590. doi:10.1111/ejn.12737
  • Ballatore, C., Lee, V.M.-Y., & Trojanowski, J.Q. (2007). Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews. Neuroscience, 8(9), 663–672. doi:10.1038/nrn2194
  • Bendotti, C., Marino, M., Cheroni, C., Fontana, E., Crippa, V., Poletti, A., & De Biasi, S. (2012). Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Progress in Neurobiology, 97(2), 101–126. doi:10.1016/j.pneurobio.2011.10.001
  • Bodea, L.-G., Eckert, A., Ittner, L.M., Piguet, O., & Götz, J. (2016). Tau physiology and pathomechanisms in frontotemporal lobar degeneration. Journal of Neurochemistry, 138(Suppl 1), 71–94. doi:10.1111/jnc.13600
  • Cash, A.D., Aliev, G., Siedlak, S.L., Nunomura, A., Fujioka, H., Zhu, X., … Perry, G. (2003). Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. The American Journal of Pathology, 162(5), 1623–1627. doi:10.1016/s0002-9440(10)64296-4
  • Couthouis, H., Shorter, D.-H., Erion, O., Liu, R., Jethava, H., Epstein, C., … Rademakers, M.,&G. (2011). A yeast functional screen predicts new candidate ALS disease genes. Proceedings of the National Academy of Sciences of the United States of America, 108(52), 20881–20890. doi:10.1073/pnas.1109434108
  • Cuchillo-Ibanez, I., Seereeram, A., Byers, H.L., Leung, K.-Y., Ward, M.A., Anderton, B.H., & Hanger, D.P. (2008). Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology, 22(9), 3186–3195. doi:10.1096/fj.08-109181
  • Durcan, T.M., Kontogiannea, M., Thorarinsdottir, T., Fallon, L., Williams, A.J., Djarmati, A., … Fon, E.A. (2011). The Machado-Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Human Molecular Genetics, 20(1), 141–154. doi:10.1093/hmg/ddq452
  • Feany, M.B., & Bender, W.W. (2000). A Drosophila model of Parkinson's disease. Nature, 404(6776), 394–398. doi:10.1038/35006074
  • Gendron, T.F., & Petrucelli, L. (2009). The role of tau in neurodegeneration. Molecular Neurodegeneration, 4, 13. doi:10.1186/1750-1326-4-13
  • Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., & Binder, L.I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences of the United States of America, 83(13), 4913–4917. doi:10.1073/pnas.83.13.4913
  • Gustke, N., Trinczek, B., Biernat, J., Mandelkow, E.M., & Mandelkow, E. (1994). Domains of tau protein and interactions with microtubules. Biochemistry, 33(32), 9511–9522. doi:10.1021/bi00198a017
  • Hanks, S.K., Ryzhova, L., Shin, N.-Y., & Brábek, J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Frontiers in Bioscience : a Journal and Virtual Library, 8, d982–996. doi:10.2741/1114
  • Hutton. (2000). Molecular genetics of chromosome 17 tauopathies. Annals of the New York Academy of Sciences, 920, 63–73. doi:10.1111/j.1749-6632.2000.tb06906.x
  • Hutton, L., Rizzu, B., Froelich, H., Pickering-Brown, C., Isaacs, G., Hackett, A., … Mann, L.,&H. (1998). Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686), 702–705. doi:10.1038/31508
  • Iqbal, K., Grundke-Iqbal, I., Smith, A.J., George, L., Tung, Y.C., & Zaidi, T. (1989). Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 86(14), 5646–5650. doi:10.1073/pnas.86.14.5646
  • Iqbal, K., Liu, F., & Gong, C.-X. (2016). Tau and neurodegenerative disease: the story so far. Nature Reviews. Neurology, 12(1), 15–27. doi:10.1038/nrneurol.2015.225
  • Klionsky, A., Abeliovich, A., Acevedo-Arozena, A., Agholme, A., Agostinis, A.-G., Ahn, A.-M. … Zuckerbraun B, (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 8(4), 445–544. doi:10.4161/auto.19496
  • Krüger, L., & Mandelkow, E.M. (2016). Tau neurotoxicity and rescue in animal models of human Tauopathies. Current Opinion in Neurobiology, 36, 52–58. doi:10.1016/j.conb.2015.09.004
  • Kurosawa, M., Matsumoto, G., Sumikura, H., Hatsuta, H., Murayama, S., Sakurai, T., … Nukina, N. (2016). Serine 403-phosphorylated p62/SQSTM1 immunoreactivity in inclusions of neurodegenerative diseases. Neuroscience Research, 103, 64–70. doi:10.1016/j.neures.2015.08.002
  • Lee, V.M., Goedert, M., & Trojanowski, J.Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159. doi:10.1146/annurev.neuro.24.1.1121
  • Lee, S., Jeon, Y.-M., Cha, S.J., Kim, S., Kwon, Y., Jo, M., … Kim, H.-J. (2020). PTK2/FAK regulates UPS impairment via SQSTM1/p62 phosphorylation in TARDBP/TDP-43 proteinopathies. Autophagy, 16(8), 1396–1412. doi:10.1080/15548627.2019.1686729
  • Lee, S., Jo, M., Lee, H.E., Jeon, Y.-M., Kim, S., Kwon, Y., … Kim, H.-J. (2021). HEXA-018, a Novel Inducer of Autophagy, Rescues TDP-43 Toxicity in Neuronal Cells. Frontiers in Pharmacology, 12, 747975. doi:10.3389/fphar.2021.747975
  • Lee, S., Kwon, Y., Kim, S., Jo, M., Jeon, Y.-M., Cheon, M., … Kim, H.-J. (2020). The Role of HDAC6 in TDP-43-Induced Neurotoxicity and UPS Impairment. Frontiers in Cell and Developmental Biology, 8, 581942. doi:10.3389/fcell.2020.581942
  • Li, Z., Arnaud, L., Rockwell, P., & Figueiredo-Pereira, M.E. (2004). A single amino acid substitution in a proteasome subunit triggers aggregation of ubiquitinated proteins in stressed neuronal cells. Journal of Neurochemistry, 90(1), 19–28. doi:10.1111/j.1471-4159.2004.02456.x
  • Liu, Y., Ding, R., Xu, Z., Xue, Y., Zhang, D., Zhang, Y., … Li, X. (2021). Roles and Mechanisms of the Protein Quality Control System in Alzheimer's Disease. International Journal of Molecular Sciences, 23(1), 345. doi:10.3390/ijms23010345
  • Liu, Y., Fallon, L., Lashuel, H.A., Liu, Z., & Lansbury, P.T. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell, 111(2), 209–218. doi:10.1016/s0092-8674(02)01012-7
  • Martini-Stoica, H., Xu, Y., Ballabio, A., & Zheng, H. (2016). The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends in Neurosciences, 39(4), 221–234. doi:10.1016/j.tins.2016.02.002
  • McKinnon, C., De Snoo, M.L., Gondard, E., Neudorfer, C., Chau, H., Ngana, S.G., … Kalia, S.K. (2020). Early-onset impairment of the ubiquitin-proteasome system in dopaminergic neurons caused by alpha-synuclein. Acta Neuropathologica Communications, 8(1), 17. doi:10.1186/s40478-020-0894-0
  • Mori, H., Kondo, J., & Ihara, Y. (1987). Ubiquitin is a component of paired helical filaments in Alzheimer's disease. Science (New York, N.Y.), 235(4796), 1641–1644. doi:10.1126/science.3029875
  • Myeku, N., Clelland, C.L., Emrani, S., Kukushkin, N.V., Yu, W.H., Goldberg, A.L., & Duff, K.E. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nature Medicine, 22(1), 46–53. doi:10.1038/nm.4011
  • Nah, J., Yuan, J., & Jung, Y.-K. (2015). Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Molecules and Cells, 38(5), 381–389. doi:10.14348/molcells.2015.0034
  • Nalepa, G., Rolfe, M., & Harper, J.W. (2006). Drug discovery in the ubiquitin-proteasome system. Nature Reviews. Drug Discovery, 5(7), 596–613. doi:10.1038/nrd2056
  • Nelson, A., Bigio, B., Braak, C., Castellani, C., Davies, D.T., Duyckaerts, F., … Woltjer, B. (2012). Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. Journal of Neuropathology and Experimental Neurology, 71(5), 362–381. doi:10.1097/NEN.0b013e31825018f7
  • Pan, T., Kondo, S., Le, W., & Jankovic, J. (2008). The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain : a Journal of Neurology, 131(Pt 8), 1969–1978. doi:10.1093/brain/awm318
  • Pucher, J., Jayaprakash, P., Aftyka, T., Sigman, L., & Van Swol, R. (1995). Clinical evaluation of a new flossing device. Quintessence International (Berlin, Germany : 1985), 26(4), 273–278. https://www.ncbi.nlm.nih.gov/pubmed/7568747
  • Ramsden, M., Kotilinek, L., Forster, C., Paulson, J., McGowan, E., SantaCruz, K., … Ashe, K.H. (2005). Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 25(46), 10637–10647. doi:10.1523/JNEUROSCI.3279-05.2005
  • Rasmussen, L.J.H., Müller, H.S.H., Jørgensen, B., Pedersen, S.F., & Hoffmann, E.K. (2015). Osmotic shrinkage elicits FAK- and Src phosphorylation and Src-dependent NKCC1 activation in NIH3T3 cells. American Journal of Physiology. Cell Physiology, 308(2), C101–110. doi:10.1152/ajpcell.00070.2014
  • Santacruz, L., Spires, P., Kotilinek, I., Guimaraes, D., Ramsden, M., Forster, Y., … Hyman, H.,&A. (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science, 309(5733), 476–481. doi:10.1126/science.1113694
  • Tai, H.-C., Serrano-Pozo, A., Hashimoto, T., Frosch, M.P., Spires-Jones, T.L., & Hyman, B.T. (2012). The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. The American Journal of Pathology, 181(4), 1426–1435. doi:10.1016/j.ajpath.2012.06.033
  • Tanida, I., Ueno, T., & Kominami, E. (2008). LC3 and Autophagy. Methods in Molecular Biology, 445, 77–88. doi:10.1007/978-1-59745-157-4_4
  • Wang, C., & Wang, X. (2015). The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochimica et Biophysica Acta, 1852(2), 188–194. doi:10.1016/j.bbadis.2014.07.028
  • Williams. (2006). Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Internal Medicine Journal, 36(10), 652–660. doi:10.1111/j.1445-5994.2006.01153.x
  • Wittmann, C.W., Wszolek, M.F., Shulman, J.M., Salvaterra, P.M., Lewis, J., Hutton, M., & Feany, M.B. (2001). Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science, 293(5530), 711–714. doi:10.1126/science.1062382
  • Yin, P., Bai, D., Zhu, L., Deng, F., Guo, X., Li, B., … Li, X.-J. (2021). Cytoplasmic TDP-43 impairs the activity of the ubiquitin-proteasome system. Experimental Neurology, 345, 113833. doi:10.1016/j.expneurol.2021.113833
  • Zhang, M., Deng, Y., Luo, Y., Zhang, S., Zou, H., Cai, F., … Song, W. (2012). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. Journal of Neurochemistry, 120(6), 1129–1138. doi:10.1111/j.1471-4159.2011.07644.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.