873
Views
1
CrossRef citations to date
0
Altmetric
Review

Inter-organ regulation by the brain in Drosophila development and physiology

ORCID Icon, ORCID Icon & ORCID Icon
Pages 57-69 | Received 03 Jun 2022, Accepted 13 Oct 2022, Published online: 12 Nov 2022

References

  • Agrawal, N., Delanoue, R., Mauri, A., Basco, D., Pasco, M., Thorens, B., & Leopold, P. (2016). The Drosophila TNF Eiger is an adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metabolism, 23(4), 675–684. https://doi.org/10.1016/j.cmet.2016.03.003
  • Al-Anzi, B., Armand, E., Nagamei, P., Olszewski, M., Sapin, V., Waters, C., Zinn, K., Wyman, R. J., & Benzer, S. (2010). The leucokinin pathway and its neurons regulate meal size in Drosophila. Current Biology, 20(11), 969–978. https://doi.org/10.1016/j.cub.2010.04.039
  • Alfa, R. W., Park, S., Skelly, K.-R., Poffenberger, G., Jain, N., Gu, X., Kockel, L., Wang, J., Liu, Y., Powers, A. C., & Kim, S. K. (2015). Suppression of insulin production and secretion by a decretin hormone. Cell Metabolism, 21(2), 323–334. https://doi.org/10.1016/j.cmet.2015.01.006
  • Amcheslavsky, A., Jiang, J., & Ip, Y. T. (2009). Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell, 4(1), 49–61. https://doi.org/10.1016/j.stem.2008.10.016
  • Amrein, H., & Thorne, N. (2005). Gustatory perception and behavior in Drosophila melanogaster. Current Biology, 15(17), R673–R684. https://doi.org/10.1016/j.cub.2005.08.021
  • Bai, H., Kang, P., & Tatar, M. (2012). Drosophila insulin-like peptide-6 (dilp6) expression from fat body extends lifespan and represses secretion of Drosophila insulin-like peptide-2 from the brain. Aging Cell, 11(6), 978–985. https://doi.org/10.1111/acel.12000
  • Banerjee, U., Girard, J. R., Goins, L. M., & Spratford, C. M. (2019). Drosophila as a genetic model for hematopoiesis. Genetics, 211(2), 367–417. https://doi.org/10.1534/genetics.118.300223
  • Bellmann, D., Richardt, A., Freyberger, R., Nuwal, N., Schwarzel, M., Fiala, A., & Stortkuhl, K. F. (2010). Optogenetically induced olfactory stimulation in drosophila larvae reveals the neuronal basis of odor-aversion behavior. Frontiers in Behavioral Neuroscience, 4, 27. https://doi.org/10.3389/fnbeh.2010.00027
  • Benmimoun, B., Polesello, C., Waltzer, L., & Haenlin, M. (2012). Dual role for insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development, 139(10), 1713–1717. https://doi.org/10.1242/dev.080259
  • Berger, M., Gray, J. A., & Roth, B. L. (2009). The expanded biology of serotonin. Annual Review of Medicine, 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802
  • Besedovsky, H., del Rey, A., Sorkin, E., Da Prada, M., Burri, R., & Honegger, C. (1983). The immune response evokes changes in brain noradrenergic neurons. Science, 221(4610), 564–566. https://doi.org/10.1126/science.6867729
  • Cameron, P., Hiroi, M., Ngai, J., & Scott, K. (2010). The molecular basis for water taste in Drosophila. Nature, 465(7294), 91–95. https://doi.org/10.1038/nature09011
  • Capo, F., Chaduli, D., Viallat-Lieutaud, A., Charroux, B., & Royet, J. (2017). Oligopeptide transporters of the SLC15 family are dispensable for peptidoglycan sensing and transport in Drosophila. Journal of Innate Immunity, 9(5), 483–492. https://doi.org/10.1159/000475771
  • Castillo-Armengol, J., Fajas, L., & Lopez-Mejia, I. C. (2019). Inter-organ communication: a gatekeeper for metabolic health. EMBO Reports, 20(9), e47903. https://doi.org/10.15252/embr.201947903
  • Cekanaviciute, E., Yoo, B. B., Runia, T. F., Debelius, J. W., Singh, S., Nelson, C. A., Kanner, R., Bencosme, Y., Lee, Y. K., Hauser, S. L., Crabtree-Hartman, E., Sand, I. K., Gacias, M., Zhu, Y., Casaccia, P., Cree, B. A. C., Knight, R., Mazmanian, S. K., & Baranzini, S. E. (2017). Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 114(40), 10713–10718. https://doi.org/10.1073/pnas.1711235114
  • Chinta, S. J., & Andersen, J. K. (2005). Dopaminergic neurons. The International Journal of Biochemistry & Cell Biology, 37(5), 942–946. https://doi.org/10.1016/j.biocel.2004.09.009
  • Cho, B., Spratford, C. M., Yoon, S., Cha, N., Banerjee, U., & Shim, J. (2018). Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila. Nature Communications, 9(1), 2679. https://doi.org/10.1038/s41467-018-04990-3
  • Choi, N. H., Lucchetta, E., & Ohlstein, B. (2011). Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18702–18707. https://doi.org/10.1073/pnas.1109348108
  • Chu, C., Artis, D., & Chiu, I. M. (2020). Neuro-immune interactions in the tissues. Immunity, 52(3), 464–474. https://doi.org/10.1016/j.immuni.2020.02.017
  • Clarke, I. J. (2015). Hypothalamus as an endocrine organ. Comprehensive Physiology, 5(1), 217–253. https://doi.org/10.1002/cphy.c140019
  • Corcoran, S., Mase, A., Hashmi, Y., Ouyang, D., Augsburger, J., Jacobs, T., Kukar, K., & Brückner, K. (2020). Regulation of blood cell transdifferentiation by oxygen sensing neurons. bioRxiv, 2020.2004.2022.056622. https://doi.org/10.1101/2020.04.22.056622
  • Cox, M. A., Duncan, G. S., Lin, G. H. Y., Steinberg, B. E., Yu, L. X., Brenner, D., Buckler, L. N., Elia, A. J., Wakeham, A. C., Nieman, B., Dominguez-Brauer, C., Elford, A. R., Gill, K. T., Kubli, S. P., Haight, J., Berger, T., Ohashi, P. S., Tracey, K. J., Olofsson, P. S., & Mak, T. W. (2019). Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science, 363(6427), 639–644. https://doi.org/10.1126/science.aau9072
  • Cryan, J. F., O'Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M., Codagnone, M. G., Cussotto, S., Fulling, C., Golubeva, A. V., Guzzetta, K. E., Jaggar, M., Long-Smith, C. M., Lyte, J. M., Martin, J. A., Molinero-Perez, A., Moloney, G., Morelli, E., Morillas, E., … Dinan, T. G. (2019). The microbiota-gut-brain axis. Physiological Reviews, 99(4), 1877–2013. https://doi.org/10.1152/physrev.00018.2018
  • Dahanukar, A., Lei, Y. T., Kwon, J. Y., & Carlson, J. R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron, 56(3), 503–516. https://doi.org/10.1016/j.neuron.2007.10.024
  • Demontis, F., & Perrimon, N. (2009). Integration of insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development, 136(6), 983–993. https://doi.org/10.1242/dev.027466
  • Droujinine, I. A., & Perrimon, N. (2016). Interorgan communication pathways in physiology: Focus on Drosophila. Annual Review of Genetics, 50, 539–570. https://doi.org/10.1146/annurev-genet-121415-122024
  • Dus, M., Lai, J. S.-Y., Gunapala, K. M., Min, S., Tayler, T. D., Hergarden, A. C., Geraud, E., Joseph, C. M., & Suh, G. S. B. (2015). Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1), 139–151. https://doi.org/10.1016/j.neuron.2015.05.032
  • Duvic, B., Hoffmann, J. A., Meister, M., & Royet, J. (2002). Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Current Biology, 12(22), 1923–1927. https://doi.org/10.1016/S0960-9822(02)01297-6
  • Escher, S. A., & Rasmuson-Lestander, A. (1999). The Drosophila glucose transporter gene: cDNA sequence, phylogenetic comparisons, analysis of functional sites and secondary structures. Hereditas, 130(2), 95–103. https://doi.org/10.1111/j.1601-5223.1999.00095.x
  • Fujii, S., Yavuz, A., Slone, J., Jagge, C., Song, X., & Amrein, H. (2015). Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Current Biology, 25(5), 621–627. https://doi.org/10.1016/j.cub.2014.12.058
  • Gancheva, S., Jelenik, T., Alvarez-Hernandez, E., & Roden, M. (2018). Interorgan metabolic crosstalk in human insulin resistance. Physiological Reviews, 98(3), 1371–1415. https://doi.org/10.1152/physrev.00015.2017
  • Ganguly, A., Pang, L., Duong, V. K., Lee, A., Schoniger, H., Varady, E., & Dahanukar, A. (2017). A molecular and cellular context-dependent role for Ir76b in detection of amino acid taste. Cell Reports, 18(3), 737–750. https://doi.org/10.1016/j.celrep.2016.12.071
  • García-García, A., Korn, C., García-Fernández, M., Domingues, O., Villadiego, J., Martín-Pérez, D., Isern, J., Bejarano-García, J. A., Zimmer, J., Pérez-Simón, J. A., Toledo-Aral, J. J., Michel, T., Airaksinen, M. S., & Méndez-Ferrer, S. (2019). Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood, 133(3), 224–236. https://doi.org/10.1182/blood-2018-08-867648
  • Garrett, R. W., & Emerson, S. G. (2009). Bone and blood vessels: The hard and the soft of hematopoietic stem cell niches. Cell Stem Cell, 4(6), 503–506. https://doi.org/10.1016/j.stem.2009.05.011
  • Ge, X., Yang, H., Bednarek, M. A., Galon-Tilleman, H., Chen, P., Chen, M., Lichtman, J. S., Wang, Y., Dalmas, O., Yin, Y., Tian, H., Jermutus, L., Grimsby, J., Rondinone, C. M., Konkar, A., & Kaplan, D. D. (2018). LEAP2 is an endogenous antagonist of the ghrelin receptor. Cell Metabolism, 27(2), 461–469 e466. https://doi.org/10.1016/j.cmet.2017.10.016
  • Geminard, C., Rulifson, E. J., & Leopold, P. (2009). Remote control of insulin secretion by fat cells in Drosophila. Cell Metabolism, 10(3), 199–207. https://doi.org/10.1016/j.cmet.2009.08.002
  • Ghysen, A. (2003). The origin and evolution of the nervous system. The International Journal of Developmental Biology, 47(7–8), 555–562. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14756331
  • Goberdhan, D. C., Meredith, D., Boyd, C. A., & Wilson, C. (2005). PAT-related amino acid transporters regulate growth via a novel mechanism that does not require bulk transport of amino acids. Development, 132(10), 2365–2375. https://doi.org/10.1242/dev.01821
  • Gold, K. S., & Bruckner, K. (2014). Drosophila as a model for the two myeloid blood cell systems in vertebrates. Experimental Hematology, 42(8), 717–727. https://doi.org/10.1016/j.exphem.2014.06.002
  • Gold, K. S., & Bruckner, K. (2015). Macrophages and cellular immunity in Drosophila melanogaster. Seminars in Immunology, 27(6), 357–368. https://doi.org/10.1016/j.smim.2016.03.010
  • Gunn, I., O'Shea, D., Turton, M. D., Beak, S. A., & Bloom, S. R. (1996). Central glucagon-like peptide-I in the control of feeding. Biochemical Society Transactions, 24(2), 581–584. https://doi.org/10.1042/bst0240581
  • Hallem, E. A., & Carlson, J. R. (2006). Coding of odors by a receptor repertoire. Cell, 125(1), 143–160. https://doi.org/10.1016/j.cell.2006.01.050
  • Harris, D. T., Kallman, B. R., Mullaney, B. C., & Scott, K. (2015). Representations of taste modality in the Drosophila brain. Neuron, 86(6), 1449–1460. https://doi.org/10.1016/j.neuron.2015.05.026
  • Hergarden, A. C., Tayler, T. D., & Anderson, D. J. (2012). Allatostatin-A neurons inhibit feeding behavior in adult Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109(10), 3967–3972. https://doi.org/10.1073/pnas.1200778109
  • Hsu, H. J., & Drummond-Barbosa, D. (2009). Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1117–1121. https://doi.org/10.1073/pnas.0809144106
  • Hsu, H. J., & Drummond-Barbosa, D. (2011). Insulin signals control the competence of the Drosophila female germline stem cell niche to respond to Notch ligands. Developmental Biology, 350(2), 290–300. https://doi.org/10.1016/j.ydbio.2010.11.032
  • Hughson, B. N. (2021). The glucagon-like adipokinetic hormone in Drosophila melanogaster – Biosynthesis and Secretion. Frontiers in Physiology, 12, 710652. https://doi.org/10.3389/fphys.2021.710652
  • Huh, J. R., & Veiga-Fernandes, H. (2020). Neuroimmune circuits in inter-organ communication. Nature Reviews. Immunology, 20(4), 217–228. https://doi.org/10.1038/s41577-019-0247-z
  • Ikeya, T., Galic, M., Belawat, P., Nairz, K., & Hafen, E. (2002). Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Current Biology, 12(15), 1293–1300. https://doi.org/10.1016/S0960-9822(02)01043-6
  • Imai, J., & Katagiri, H. (2022). Regulation of systemic metabolism by the autonomic nervous system consisting of afferent and efferent innervation. International Immunology, 34(2), 67–79. https://doi.org/10.1093/intimm/dxab023
  • Jang, S., Chen, J., Choi, J., Lim, S. Y., Song, H., Choi, H., Kwon, H. W., Choi, M. S., & Kwon, J. Y. (2021). Spatiotemporal organization of enteroendocrine peptide expression in Drosophila. Journal of Neurogenetics, 35(4), 387–398. https://doi.org/10.1080/01677063.2021.1989425
  • Jessen, K. R. (2004). Glial cells. The International Journal of Biochemistry & Cell Biology, 36(10), 1861–1867. https://doi.org/10.1016/j.biocel.2004.02.023
  • Jiang, H., Tian, A., & Jiang, J. (2016). Intestinal stem cell response to injury: Lessons from Drosophila. Cellular and Molecular Life Sciences, 73(17), 3337–3349. https://doi.org/10.1007/s00018-016-2235-9
  • Jiao, Y., Moon, S. J., & Montell, C. (2007). A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proceedings of the National Academy of Sciences of the United States of America, 104(35), 14110–14115. https://doi.org/10.1073/pnas.0702421104
  • Jiao, Y., Moon, S. J., Wang, X., Ren, Q., & Montell, C. (2008). Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Current Biology, 18(22), 1797–1801. https://doi.org/10.1016/j.cub.2008.10.009
  • Jung, S. H., Evans, C. J., Uemura, C., & Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development, 132(11), 2521–2533. https://doi.org/10.1242/dev.01837
  • Kannangara, J. R., Mirth, C. K., & Warr, C. G. (2021). Regulation of ecdysone production in Drosophila by neuropeptides and peptide hormones. Open Biology, 11(2), 200373. https://doi.org/10.1098/rsob.200373
  • Kaplan, D. D., Zimmermann, G., Suyama, K., Meyer, T., & Scott, M. P. (2008). A nucleostemin family GTPase, NS3, acts in serotonergic neurons to regulate insulin signaling and control body size. Genes & Development, 22(14), 1877–1893. https://doi.org/10.1101/gad.1670508
  • Katayama, Y., Battista, M., Kao, W. M., Hidalgo, A., Peired, A. J., Thomas, S. A., & Frenette, P. S. (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2), 407–421. https://doi.org/10.1016/j.cell.2005.10.041
  • Kendroud, S., Bohra, A. A., Kuert, P. A., Nguyen, B., Guillermin, O., Sprecher, S. G., Reichert, H., VijayRaghavan, K., & Hartenstein, V. (2018). Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments. The Journal of Comparative Neurology, 526(1), 33–58. https://doi.org/10.1002/cne.24316
  • Kim, B., Kanai, M. I., Oh, Y., Kyung, M., Kim, E.-K., Jang, I.-H., Lee, J.-H., Kim, S.-G., Suh, G. S. B., & Lee, W.-J. (2021). Response of the microbiome-gut-brain axis in Drosophila to amino acid deficit. Nature, 593(7860), 570–574. https://doi.org/10.1038/s41586-021-03522-2
  • Kim, D. H., Shin, M., Jung, S. H., Kim, Y. J., & Jones, W. D. (2017). A fat-derived metabolite regulates a peptidergic feeding circuit in Drosophila. PLOS Biology, 15(3), e2000532. https://doi.org/10.1371/journal.pbio.2000532
  • Kim, J., & Neufeld, T. P. (2015). Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3. Nature Communications, 6, 6846. https://doi.org/10.1038/ncomms7846
  • Kim, M. J., & O'Connor, M. B. (2020). Drosophila activin signaling promotes muscle growth through InR/TORC1-dependent and -independent processes. Development, 148(1) https://doi.org/10.1242/dev.190868
  • Koivunen, P., Hirsila, M., Remes, A. M., Hassinen, I. E., Kivirikko, K. I., & Myllyharju, J. (2007). Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. The Journal of Biological Chemistry, 282(7), 4524–4532. https://doi.org/10.1074/jbc.M610415200
  • Kolodziejczyk, A., Sun, X., Meinertzhagen, I. A., & Nassel, D. R. (2008). Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLOS One, 3(5), e2110. https://doi.org/10.1371/journal.pone.0002110
  • Koranteng, F., Cho, B., & Shim, J. (2022). Intrinsic and extrinsic regulation of hematopoiesis in Drosophila. Molecules and Cells, 45(3), 101–108. https://doi.org/10.14348/molcells.2022.2039
  • Koyama, T., Rodrigues, M. A., Athanasiadis, A., Shingleton, A. W., & Mirth, C. K. (2014). Nutritional control of body size through FoxO-ultraspiracle mediated ecdysone biosynthesis. eLife, 3. https://doi.org/10.7554/eLife.03091
  • Koyama, T., Texada, M. J., Halberg, K. A., & Rewitz, K. (2020). Metabolism and growth adaptation to environmental conditions in Drosophila. Cellular and Molecular Life Sciences, 77(22), 4523–4551. https://doi.org/10.1007/s00018-020-03547-2
  • Krzemień, J., Dubois, L., Makki, R., Meister, M., Vincent, A., & Crozatier, M. (2007). Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature, 446(7133), 325–328. https://doi.org/10.1038/nature05650
  • Lacin, H., Chen, H. M., Long, X., Singer, R. H., Lee, T., & Truman, J. W. (2019). Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife, 8. https://doi.org/10.7554/eLife.43701
  • Lebestky, T., Jung, S. H., & Banerjee, U. (2003). A serrate-expressing signaling center controls Drosophila hematopoiesis. Genes & Development, 17(3), 348–353. https://doi.org/10.1101/gad.1052803
  • Lee, G., & Park, J. H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1), 311–323. https://doi.org/10.1534/genetics.167.1.311
  • Lee, K.-S., Kwon, O.-Y., Lee, J. H., Kwon, K., Min, K.-J., Jung, S.-A., Kim, A.-K., You, K.-H., Tatar, M., & Yu, K. (2008). Drosophila short neuropeptide F signalling regulates growth by ERK-mediated insulin signalling. Nature Cell Biology, 10(4), 468–475. https://doi.org/10.1038/ncb1710
  • Leitao, A. B., & Sucena, E. (2015). Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. eLife, 4. https://doi.org/10.7554/eLife.06166
  • Li, S., Torre-Muruzabal, T., Søgaard, K. C., Ren, G. R., Hauser, F., Engelsen, S. M., Pødenphanth, M. D., Desjardins, A., & Grimmelikhuijzen, C. J. P. (2013). Expression patterns of the Drosophila neuropeptide CCHamide-2 and its receptor may suggest hormonal signaling from the gut to the brain. PLOS One, 8(10), e76131. https://doi.org/10.1371/journal.pone.0076131
  • Lin, H.-H., Kuang, M. C., Hossain, I., Xuan, Y., Beebe, L., Shepherd, A. K., Rolandi, M., & Wang, J. W. (2022). A nutrient-specific gut hormone arbitrates between courtship and feeding. Nature, 602(7898), 632–638. https://doi.org/10.1038/s41586-022-04408-7
  • Long-Smith, C., O'Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., & Cryan, J. F. (2020). Microbiota-gut-brain axis: New therapeutic opportunities. Annual Review of Pharmacology and Toxicology, 60, 477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628
  • Madhwal, S., Shin, M., Kapoor, A., Goyal, M., Joshi, M. K., Ur Rehman, P. M., Gor, K., Shim, J., & Mukherjee, T. (2020). Metabolic control of cellular immune-competency by odors in Drosophila. eLife, 9. https://doi.org/10.7554/eLife.60376
  • Makhijani, K., Alexander, B., Rao, D., Petraki, S., Herboso, L., Kukar, K., Batool, I., Wachner, S., Gold, K. S., Wong, C., O'Connor, M. B., & Brückner, K. (2017). Regulation of Drosophila hematopoietic sites by Activin-beta from active sensory neurons. Nature Communications, 8, 15990. https://doi.org/10.1038/ncomms15990
  • Makhijani, K., Alexander, B., Tanaka, T., Rulifson, E., & Bruckner, K. (2011). The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. Development, 138(24), 5379–5391. https://doi.org/10.1242/dev.067322
  • Makhijani, K., & Bruckner, K. (2012). Of blood cells and the nervous system: hematopoiesis in the Drosophila larva. Fly, 6(4), 254–260. https://doi.org/10.4161/fly.22267
  • Mandal, L., Martinez-Agosto, J. A., Evans, C. J., Hartenstein, V., & Banerjee, U. (2007). A Hedgehog- and antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature, 446(7133), 320–324. https://doi.org/10.1038/nature05585
  • Manning, S., & Batterham, R. L. (2014). The role of gut hormone peptide YY in energy and glucose homeostasis: Twelve years on. Annual Review of Physiology, 76, 585–608. https://doi.org/10.1146/annurev-physiol-021113-170404
  • Marianes, A., & Spradling, A. C. (2013). Physiological and stem cell compartmentalization within the Drosophila midgut. eLife, 2, e00886. https://doi.org/10.7554/eLife.00886
  • Marina, N., Turovsky, E., Christie, I. N., Hosford, P. S., Hadjihambi, A., Korsak, A., Ang, R., Mastitskaya, S., Sheikhbahaei, S., Theparambil, S. M., & Gourine, A. V. (2018). Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia, 66(6), 1185–1199. https://doi.org/10.1002/glia.23283
  • Martelli, C., Pech, U., Kobbenbring, S., Pauls, D., Bahl, B., Sommer, M. V., Pooryasin, A., Barth, J., Arias, C. W. P., Vassiliou, C., Luna, A. J. F., Poppinga, H., Richter, F. G., Wegener, C., Fiala, A., & Riemensperger, T. (2017). SIFamide translates hunger signals into appetitive and feeding behavior in Drosophila. Cell Reports, 20(2), 464–478. https://doi.org/10.1016/j.celrep.2017.06.043
  • McBrayer, Z., Ono, H., Shimell, M., Parvy, J.-P., Beckstead, R. B., Warren, J. T., Thummel, C. S., Dauphin-Villemant, C., Gilbert, L. I., & O'Connor, M. B. (2007). Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Developmental Cell, 13(6), 857–871. https://doi.org/10.1016/j.devcel.2007.11.003
  • McGaughey, K. D., Yilmaz-Swenson, T., Elsayed, N. M., Cruz, D. A., Rodriguiz, R. M., Kritzer, M. D., Peterchev, A. V., Roach, J., Wetsel, W. C., & Williamson, D. E. (2019). Relative abundance of Akkermansia spp. and other bacterial phylotypes correlates with anxiety- and depressive-like behavior following social defeat in mice. Scientific Reports, 9(1), 3281. https://doi.org/10.1038/s41598-019-40140-5
  • McNulty, M., Puljung, M., Jefford, G., & Dubreuil, R. R. (2001). Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell and Tissue Research, 304(3), 383–389. https://doi.org/10.1007/s004410100371
  • Melcher, C., Bader, R., Walther, S., Simakov, O., & Pankratz, M. J. (2006). Neuromedin U and its putative Drosophila homolog hugin. PLOS Biology, 4(3), e68. https://doi.org/10.1371/journal.pbio.0040068
  • Melcher, C., & Pankratz, M. J. (2005). Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLOS Biology, 3(9), e305. https://doi.org/10.1371/journal.pbio.0030305
  • Mendez-Ferrer, S., Lucas, D., Battista, M., & Frenette, P. S. (2008). Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 452(7186), 442–447. https://doi.org/10.1038/nature06685
  • Meneses, A., & Liy-Salmeron, G. (2012). Serotonin and emotion, learning and memory. Reviews in the Neurosciences, 23(5–6), 543–553. https://doi.org/10.1515/revneuro-2012-0060
  • Mihm, M., Gangooly, S., & Muttukrishna, S. (2011). The normal menstrual cycle in women. Animal Reproduction Science, 124(3-4), 229–236. https://doi.org/10.1016/j.anireprosci.2010.08.030
  • Min, S., Oh, Y., Verma, P., Whitehead, S. C., Yapici, N., Van Vactor, D., Suh, G. S., & Liberles, S. (2021). Control of feeding by piezo-mediated gut mechanosensation in Drosophila. eLife, 10. https://doi.org/10.7554/eLife.63049
  • Mirth, C., Truman, J. W., & Riddiford, L. M. (2005). The role of the prothoracic gland in determining critical weight for metamorphosis in Drosophila melanogaster. Current Biology, 15(20), 1796–1807. https://doi.org/10.1016/j.cub.2005.09.017
  • Missirlis, F., Kosmidis, S., Brody, T., Mavrakis, M., Holmberg, S., Odenwald, W. F., Skoulakis, E. M. C., & Rouault, T. A. (2007). Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics, 177(1), 89–100. https://doi.org/10.1534/genetics.107.075150
  • Miyazaki, T., & Ito, K. (2010). Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. The Journal of Comparative Neurology, 518(20), 4147–4181. https://doi.org/10.1002/cne.22433
  • Mochanova, M., Tomcala, A., Svobodova, Z., & Kodrik, D. (2018). Role of adipokinetic hormone during starvation in Drosophila. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 226, 26–35. https://doi.org/10.1016/j.cbpb.2018.08.004
  • Mukherjee, T., Kim, W. S., Mandal, L., & Banerjee, U. (2011). Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science, 332(6034), 1210–1213. https://doi.org/10.1126/science.1199643
  • Newsholme, P., Procopio, J., Lima, M. M., Pithon-Curi, T. C., & Curi, R. (2003). Glutamine and glutamate–their central role in cell metabolism and function. Cell Biochemistry and Function, 21(1), 1–9. https://doi.org/10.1002/cbf.1003
  • Oh, Y., Lai, J. S.-Y., Mills, H. J., Erdjument-Bromage, H., Giammarinaro, B., Saadipour, K., Wang, J. G., Abu, F., Neubert, T. A., & Suh, G. S. B. (2019). A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature, 574(7779), 559–564. https://doi.org/10.1038/s41586-019-1675-4
  • Oh, Y., Lai, J. S., Min, S., Huang, H. W., Liberles, S. D., Ryoo, H. D., & Suh, G. S. B. (2021). Periphery signals generated by piezo-mediated stomach stretch and neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron, 109(12), 1979–1995 e1976. https://doi.org/10.1016/j.neuron.2021.04.028
  • Okamoto, N., & Nishimura, T. (2015). Signaling from glia and cholinergic neurons controls nutrient-dependent production of an insulin-like peptide for Drosophila body growth. Developmental Cell, 35(3), 295–310. https://doi.org/10.1016/j.devcel.2015.10.003
  • Okamoto, N., Viswanatha, R., Bittar, R., Li, Z., Haga-Yamanaka, S., Perrimon, N., & Yamanaka, N. (2018). A membrane transporter is required for steroid hormone uptake in Drosophila. Developmental Cell, 47(3), 294–305 e297. https://doi.org/10.1016/j.devcel.2018.09.012
  • Palm, W., Sampaio, J. L., Brankatschk, M., Carvalho, M., Mahmoud, A., Shevchenko, A., & Eaton, S. (2012). Lipoproteins in Drosophila melanogaster–assembly, function, and influence on tissue lipid composition. PLOS Genetics, 8(7), e1002828. https://doi.org/10.1371/journal.pgen.1002828
  • Python, F., & Stocker, R. F. (2002). Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. The Journal of Comparative Neurology, 445(4), 374–387. https://doi.org/10.1002/cne.10188
  • Rajan, A., & Perrimon, N. (2012). Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell, 151(1), 123–137. https://doi.org/10.1016/j.cell.2012.08.019
  • Ramaekers, A., Magnenat, E., Marin, E. C., Gendre, N., Jefferis, G. S., Luo, L., & Stocker, R. F. (2005). Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Current Biology, 15(11), 982–992. https://doi.org/10.1016/j.cub.2005.04.032
  • Ren, G. R., Hauser, F., Rewitz, K. F., Kondo, S., Engelbrecht, A. F., Didriksen, A. K., Schjøtt, S. R., Sembach, F. E., Li, S., Søgaard, K. C., Søndergaard, L., & Grimmelikhuijzen, C. J. P. (2015). CCHamide-2 is an orexigenic brain-gut peptide in Drosophila. PLOS One, 10(7), e0133017. https://doi.org/10.1371/journal.pone.0133017
  • Roh, E., Song, D. K., & Kim, M. S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Experimental & Molecular Medicine, 48, e216. https://doi.org/10.1038/emm.2016.4
  • Roman, G., Meller, V., Wu, K. H., & Davis, R. L. (1998). The opt1 gene of Drosophila melanogaster encodes a proton-dependent dipeptide transporter. The American Journal of Physiology, 275(3), C857–C869. https://doi.org/10.1152/ajpcell.1998.275.3.C857
  • Ronveaux, C. C., Tome, D., & Raybould, H. E. (2015). Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. The Journal of Nutrition, 145(4), 672–680. https://doi.org/10.3945/jn.114.206029
  • Root, C. M., Ko, K. I., Jafari, A., & Wang, J. W. (2011). Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell, 145(1), 133–144. https://doi.org/10.1016/j.cell.2011.02.008
  • Roth, T. M., Chiang, C. Y., Inaba, M., Yuan, H., Salzmann, V., Roth, C. E., & Yamashita, Y. M. (2012). Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells. Molecular Biology of the Cell, 23(8), 1524–1532. https://doi.org/10.1091/mbc.E11-12-0999
  • Sano, H. (2015). Coupling of growth to nutritional status: The role of novel periphery-to-brain signaling by the CCHa2 peptide in Drosophila melanogaster. Fly, 9(4), 183–187. https://doi.org/10.1080/19336934.2016.1162361
  • Schlegel, P., Texada, M. J., Miroschnikow, A., Schoofs, A., Hückesfeld, S., Peters, M., Schneider-Mizell, C. M., Lacin, H., Li, F., Fetter, R. D., Truman, J. W., Cardona, A., & Pankratz, M. J. (2016). Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife, 5. https://doi.org/10.7554/eLife.16799
  • Scott, K. (2011). Out of thin air: sensory detection of oxygen and carbon dioxide. Neuron, 69(2), 194–202. https://doi.org/10.1016/j.neuron.2010.12.018
  • Selak, M. A., Armour, S. M., MacKenzie, E. D., Boulahbel, H., Watson, D. G., Mansfield, K. D., Pan, Y., Simon, M. C., Thompson, C. B., & Gottlieb, E. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell, 7(1), 77–85. https://doi.org/10.1016/j.ccr.2004.11.022
  • Selcho, M., Millán, C., Palacios-Muñoz, A., Ruf, F., Ubillo, L., Chen, J., Bergmann, G., Ito, C., Silva, V., Wegener, C., & Ewer, J. (2017). Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nature Communications, 8, 15563. https://doi.org/10.1038/ncomms15563
  • Semmelhack, J. L., & Wang, J. W. (2009). Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature, 459(7244), 218–223. https://doi.org/10.1038/nature07983
  • Serrats, J., Schiltz, J. C., Garcia-Bueno, B., van Rooijen, N., Reyes, T. M., & Sawchenko, P. E. (2010). Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron, 65(1), 94–106. https://doi.org/10.1016/j.neuron.2009.11.032
  • Shim, J., Mukherjee, T., & Banerjee, U. (2012). Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nature Cell Biology, 14(4), 394–400. https://doi.org/10.1038/ncb2453
  • Shim, J., Mukherjee, T., Mondal, B. C., Liu, T., Young, G. C., Wijewarnasuriya, D. P., & Banerjee, U. (2013). Olfactory control of blood progenitor maintenance. Cell, 155(5), 1141–1153. https://doi.org/10.1016/j.cell.2013.10.032
  • Silva, Y. P., Bernardi, A., & Frozza, R. L. (2020). The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology, 11, 25. https://doi.org/10.3389/fendo.2020.00025
  • Slaidina, M., Delanoue, R., Gronke, S., Partridge, L., & Leopold, P. (2009). A Drosophila insulin-like peptide promotes growth during nonfeeding states. Developmental Cell, 17(6), 874–884. https://doi.org/10.1016/j.devcel.2009.10.009
  • Slone, J., Daniels, J., & Amrein, H. (2007). Sugar receptors in Drosophila. Current Biology, 17(20), 1809–1816. https://doi.org/10.1016/j.cub.2007.09.027
  • Soliz, J. (2013). Erythropoietin and respiratory control at adulthood and during early postnatal life. Respiratory Physiology & Neurobiology, 185(1), 87–93. https://doi.org/10.1016/j.resp.2012.07.018
  • Song, Q., Sun, X., & Jin, X. Y. (2003). 20E-regulated USP expression and phosphorylation in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 33(12), 1211–1218. https://doi.org/10.1016/j.ibmb.2003.06.005
  • Sterne, G. R., Otsuna, H., Dickson, B. J., & Scott, K. (2021). Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife, 10. https://doi.org/10.7554/eLife.71679
  • Sun, J., Liu, C., Bai, X., Li, X., Li, J., Zhang, Z., Zhang, Y., Guo, J., & Li, Y. (2017). Drosophila FIT is a protein-specific satiety hormone essential for feeding control. Nature Communications, 8, 14161. https://doi.org/10.1038/ncomms14161
  • Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-McDermott, E. M., McGettrick, A. F., Goel, G., Frezza, C., Bernard, N. J., Kelly, B., Foley, N. H., Zheng, L., Gardet, A., Tong, Z., Jany, S. S., Corr, S. C., Haneklaus, M., Caffrey, B. E., Pierce, K., Walmsley, S., … O’Neill, L. A. J. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 496(7444), 238–242. https://doi.org/10.1038/nature11986
  • Teleman, A. A. (2009). Molecular mechanisms of metabolic regulation by insulin in Drosophila. The Biochemical Journal, 425(1), 13–26. https://doi.org/10.1042/BJ20091181
  • Tissot, M., Gendre, N., Hawken, A., Störtkuhl, K. F., & Stocker, R. F. (1997). Larval chemosensory projections and invasion of adult afferents in the antennal lobe of Drosophila. Journal of Neurobiology, 32(3), 281–297. https://doi.org/10.1002/(sici)1097-4695(199703)32:3 < 281::aid-neu3 > 3.0.co;2-3
  • Tokusumi, Y., Tokusumi, T., Shoue, D. A., & Schulz, R. A. (2012). Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland. PLOS One, 7(7), e41604. https://doi.org/10.1371/journal.pone.0041604
  • Tramezzani, J. H., Morita, E., & Chiocchio, S. R. (1971). The carotid body as a neuroendocrine organ involved in control of erythropoiesis. Proceedings of the National Academy of Sciences of the United States of America, 68(1), 52–55. https://doi.org/10.1073/pnas.68.1.52
  • Tsodyks, M., & Gilbert, C. (2004). Neural networks and perceptual learning. Nature, 431(7010), 775–781. https://doi.org/10.1038/nature03013
  • Ueishi, S., Shimizu, H., & Inoue, Y. H. (2009). Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila. Cell Structure and Function, 34(1), 61–69. https://doi.org/10.1247/csf.08042
  • van der Hee, B., & Wells, J. M. (2021). Microbial regulation of host physiology by short-chain fatty acids. Trends in Microbiology, 29(8), 700–712. https://doi.org/10.1016/j.tim.2021.02.001
  • von Bartheld, C. S., Bahney, J., & Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. The Journal of Comparative Neurology, 524(18), 3865–3895. https://doi.org/10.1002/cne.24040
  • Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, H., Ulloa, L., Al-Abed, Y., Czura, C. J., & Tracey, K. J. (2003). Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 421(6921), 384–388. https://doi.org/10.1038/nature01339
  • Wang, P., Jia, Y., Liu, T., Jan, Y. N., & Zhang, W. (2020). Visceral mechano-sensing neurons control Drosophila feeding by using piezo as a sensor. Neuron, 108(4), 640–650 e644. https://doi.org/10.1016/j.neuron.2020.08.017
  • Wang, S., Tulina, N., Carlin, D. L., & Rulifson, E. J. (2007). The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19873–19878. https://doi.org/10.1073/pnas.0707465104
  • Warren, J. T., Yerushalmi, Y., Shimell, M. J., O'Connor, M. B., Restifo, L. L., & Gilbert, L. I. (2006). Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval development of Drosophila melanogaster: Correlations with changes in gene activity. Developmental Dynamics, 235(2), 315–326. https://doi.org/10.1002/dvdy.20626
  • Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D., & Carlson, J. R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron, 69(2), 258–272. https://doi.org/10.1016/j.neuron.2011.01.001
  • Werbner, M., Barsheshet, Y., Werbner, N., Zigdon, M., Averbuch, I., Ziv, O., Brant, B., Elliott, E., Gelberg, S., Titelbaum, M., Koren, O., & Avni, O. (2019). Social-stress-responsive microbiota induces stimulation of self-reactive effector T helper cells. mSystems, 4(4), e00292-18. https://doi.org/10.1128/mSystems.00292-18
  • Williams, M. J. (2007). Drosophila hemopoiesis and cellular immunity. Journal of Immunology, 178(8), 4711–4716. https://doi.org/10.4049/jimmunol.178.8.4711
  • Williams, M. J., Akram, M., Barkauskaite, D., Patil, S., Kotsidou, E., Kheder, S., Vitale, G., Filaferro, M., Blemings, S. W., Maestri, G., Hazim, N., Vergoni, A. V., & Schiöth, H. B. (2020). CCAP regulates feeding behavior via the NPF pathway in Drosophila adults. Proceedings of the National Academy of Sciences of the United States of America, 117(13), 7401–7408. https://doi.org/10.1073/pnas.1914037117
  • Wilson, R. I., & Laurent, G. (2005). Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. The Journal of Neuroscience, 25(40), 9069–9079. https://doi.org/10.1523/JNEUROSCI.2070-05.2005
  • Wu, Q., Wen, T., Lee, G., Park, J. H., Cai, H. N., & Shen, P. (2003). Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron, 39(1), 147–161. https://doi.org/10.1016/S0896-6273(03)00396-9
  • Zhang, Y. V., Ni, J., & Montell, C. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science, 340(6138), 1334–1338. https://doi.org/10.1126/science.1234133

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.