618
Views
3
CrossRef citations to date
0
Altmetric
Original Research Articles

Reduced branched-chain aminotransferase activity alleviates metabolic vulnerability caused by dim light exposure at night in Drosophila

, , , , ORCID Icon, , , ORCID Icon & show all
Pages 25-35 | Received 22 Apr 2022, Accepted 02 Nov 2022, Published online: 22 Nov 2022

References

  • Aggarwal, A., Costa, M. J., Rivero-Gutierrez, B., Ji, L., Morgan, S. L., & Feldman, B. J. (2017). The circadian clock regulates adipogenesis by a Per3 crosstalk pathway to Klf15. Cell Reports, 21(9), 2367–2375. doi:10.1016/j.celrep.2017.11.004
  • Alvers, A. L., Fishwick, L. K., Wood, M. S., Hu, D., Chung, H. S., Dunn, W. A., Jr., & Aris, J. P. (2009). Autophagy and amino acid homeostasis are required for chronological longevity in Saccharomyces cerevisiae. Aging Cell, 8(4), 353–369. doi:10.1111/j.1474-9726.2009.00469.x
  • Aoyama, S., & Shibata, S. (2020). Time-of-day-dependent physiological responses to meal and exercise. Frontiers in Nutrition, 7, 18. doi:10.3389/fnut.2020.00018
  • Azevedo, R., Hansen, D., Chen, K. F., Rosato, E., & Kyriacou, C. P. (2020). Disrupted glutamate signaling in Drosophila generates locomotor rhythms in constant light. Frontiers in Physiology., 6(11), 145.
  • Bachleitner, W., Kempinger, L., Wulbeck, C., Rieger, D., & Helfrich-Forster, C. (2007). Moonlight shifts the endogenous clock of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 104(9), 3538–3543. doi:10.1073/pnas.0606870104
  • Bae, K., Lee, C., Sidote, D., Chuang, K., & Edery, I. (1998). Circadian regulation of a Drosophila homolog of the mammalian clock gene: PER and TIM function as positive regulators. Molecular and Cellular Biology, 18(10), 6142–6151. doi:10.1128/MCB.18.10.6142
  • Bailey, S. M., Udoh, U. S., & Young, M. E. (2014). Circadian regulation of metabolism. The Journal of Endocrinology, 222(2), R75–96. doi:10.1530/JOE-14-0200
  • Bedrosian, T. A., & Nelson, R. J. (2017). Timing of light exposure affects mood and brain circuits. Translational Psychiatry, 7(1), e1017. doi:10.1038/tp.2016.262
  • Benito, J., Hoxha, V., Lama, C., Lazareva, A. A., Ferveur, J. F., Hardin, P. E., & Dauwalder, B. (2010). The circadian output gene takeout is regulated by Pdp1ε. Proceedings of the National Academy of Sciences of the United States of America, 107 (6), 2544–2549. doi:10.1073/pnas.0906422107
  • Burke, T. M., Markwald, R. R., McHill, A. W., Chinoy, E. D., Snider, J. A., Bessman, S. C., Jung, C. M., O’Neill, J. S., & Wright, K. P. (2015). Effects of caffeine on the human circadian clock in vivo and in vitro. Science Translational Medicine, 7(305), 305. doi:10.1126/scitranslmed.aac5125
  • Chiu, J. C., Low, K. H., Pike, D. H., Yildirim, E., & Edery, I. (2010). Assaying locomotor activity to study circadian rhythms and sleep parameters in Drosophila. Journal of Visualized Experiments, 43, 2157.
  • Cho, E., Oh, J. H., Lee, E., Do, Y. R., & Kim, E. Y. (2016). Cycles of circadian illuminance are sufficient to entrain and maintain circadian locomotor rhythms in Drosophila. Scientific Reports, 6, 37784. doi:10.1038/srep37784
  • D’Antona, G., Ragni, M., Cardile, A., Tedesco, L., Dossena, M., Bruttini, F., Caliaro, F., Corsetti, G., Bottinelli, R., Carruba, M. O., Valerio, A., & Nisoli, E. (2010). Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metabolism, 12(4), 362–372. doi:10.1016/j.cmet.2010.08.016
  • DiAngelo, J. R., Erion, R., Crocker, A., & Sehgal, A. (2011). The central clock neurons regulate lipid storage in Drosophila. PLOS One, 6(5), e19921. doi:10.1371/journal.pone.0019921
  • Doi, R., Oishi, K., & Ishida, N. (2010). CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. The Journal of Biological Chemistry, 285(29), 22114–22121. doi:10.1074/jbc.M110.110361
  • Dyar, K. A., Lutter, D., Artati, A., Ceglia, N. J., Liu, Y., Armenta, D., Jastroch, M., Schneider, S., de Mateo, S., Cervantes, M., Abbondante, S., Tognini, P., Orozco-Solis, R., Kinouchi, K., Wang, C., Swerdloff, R., Nadeef, S., Masri, S., Magistretti, P., … Sassone-Corsi, P. (2018). Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell, 174(6), 1571–1585.e11. doi:10.1016/j.cell.2018.08.042
  • Esslinger, S. M., Schwalb, B., Helfer, S., Michalik, K. M., Witte, H., Maier, K. C., Martin, D., Michalke, B., Tresch, A., Cramer, P., & Förstemann, K. (2013). Drosophila miR-277 controls branched-chain amino acid catabolism and affects lifespan. RNA Biology, 10(6), 1042–1056. doi:10.4161/rna.24810
  • Fan, L., Hsieh, P. N., Sweet, D. R., & Jain, M. K. (2018). Kruppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity. Pharmacological Research, 130, 123–126. doi:10.1016/j.phrs.2017.12.018
  • Fonken, L. K., Aubrecht, T. G., Melendez-Fernandez, O. H., Weil, Z. M., & Nelson, R. J. (2013). Dim LAN disrupts molecular circadian rhythms and increases body weight. Journal of Biological Rhythms, 28(4), 262–271. doi:10.1177/0748730413493862
  • Fonken, L. K., & Nelson, R. J. (2014). The effects of LAN on circadian clocks and metabolism. Endocrine Reviews, 35(4), 648–670. doi:10.1210/er.2013-1051
  • Fonken, L. K., Workman, J. L., Walton, J. C., Weil, Z. M., Morris, J. S., Haim, A., & Nelson, R. J. (2010). LAN increases body mass by shifting the time of food intake. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18664–18669. doi:10.1073/pnas.1008734107
  • Gooley, J. J. (2016). Circadian regulation of lipid metabolism. The Proceedings of the Nutrition Society, 75(4), 440–450. doi:10.1017/S0029665116000288
  • Gooley, J. J., Chamberlain, K., Smith, K. A., Khalsa, S. B., Rajaratnam, S. M., Van Reen, E., Zeitzer, J. M., Czeisler, C. A., & Lockley, S. W. (2011). Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. The Journal of Clinical Endocrinology and Metabolism, 96(3), E463–472.
  • Gray, S., Wang, B., Orihuela, Y., Hong, E.-G., Fisch, S., Haldar, S., Cline, G. W., Kim, J. K., Peroni, O. D., Kahn, B. B., & Jain, M. K. (2007). Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metabolism, 5(4), 305–312. doi:10.1016/j.cmet.2007.03.002
  • Grima, B., Chelot, E., Xia, R., & Rouyer, F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature, 431(7010), 869–873. doi:10.1038/nature02935
  • Helfrich-Förster, C. (2000). Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster–sex-specific differences suggest a different quality of activity. Journal of Biological Rhythms, 15(2), 135–154. doi:10.1177/074873040001500208
  • Huang, W., Ramsey, K. M., Marcheva, B., & Bass, J. (2011). Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation, 121(6), 2133–2141. doi:10.1172/JCI46043
  • Ja, W. W., Carvalho, G. B., Mak, E. M., de la Rosa, N. N., Fang, A. Y., Liong, J. C., Brummel, T., & Benzer, S. (2007). Prandiology of Drosophila and the CAFE assay. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8253–8256. doi:10.1073/pnas.0702726104
  • Jewell, J. L., Kim, Y. C., Russell, R. C., Yu, F. X., Park, H. W., Plouffe, S. W., Tagliabracci, V. S., & Guan, K. L. (2015). Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science, 347(6218), 194–198. doi:10.1126/science.1259472
  • Jeyaraj, D., Scheer, F. A. J. L., Ripperger, J. A., Haldar, S. M., Lu, Y., Prosdocimo, D. A., Eapen, S. J., Eapen, B. L., Cui, Y., Mahabeleshwar, G. H., Lee, H-g., Smith, M. A., Casadesus, G., Mintz, E. M., Sun, H., Wang, Y., Ramsey, K. M., Bass, J., Shea, S. A., Albrecht, U., & Jain, M. K. (2012). Klf15 orchestrates circadian nitrogen homeostasis. Cell Metabolism, 15(3), 311–323. doi:10.1016/j.cmet.2012.01.020
  • Kempinger, L., Dittmann, R., Rieger, D., & Helfrich-Forster, C. (2009). The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiology International, 26(2), 151–166. doi:10.1080/07420520902747124
  • Lee, E., & Kim, M. (2019). Light and life at night as circadian rhythm disruptors. Chronobiology in Medicine, 1(3), 95–102. doi:10.33069/cim.2019.0016
  • LeGates, T. A., Fernandez, D. C., & Hattar, S. (2014). Light as a central modulator of circadian rhythms, sleep and affect. Nature Reviews. Neuroscience, 15(7), 443–454. doi:10.1038/nrn3743
  • Liang, C., Curry, B. J., Brown, P. L., & Zemel, M. B. (2014). Leucine modulates mitochondrial biogenesis and SIRT1-AMPK signaling in C2C12 myotubes. Journal of Nutrition and Metabolism, 2014, 239750. doi:10.1155/2014/239750
  • Monirujjaman, M., & Ferdouse, A. (2014). Metabolic and physiological roles of branched-chain amino acids. Advances in Molecular Biology, 2014, 1–6. doi:10.1155/2014/364976
  • Nie, C., He, T., Zhang, W., Zhang, G., & Ma, X. (2018). Branched chain amino acids: Beyond nutrition metabolism. International Journal of Molecular Sciences, 19(4), 954. doi:10.3390/ijms19040954
  • Oishi, K., Yamamoto, S., Itoh, N., Miyazaki, K., Nemoto, T., Nakakita, Y., & Kaneda, H. (2014). Disruption of behavioral circadian rhythms induced by psychophysiological stress affects plasma free amino acid profiles without affecting peripheral clock gene expression in mice. Biochemical and Biophysical Research Communications, 450(1), 880–884. doi:10.1016/j.bbrc.2014.06.083
  • Okuliarova, M., Rumanova, V. S., Stebelova, K., & Zeman, M. (2020). Dim LAN disturbs molecular pathways of lipid metabolism. International Journal of Molecular Sciences, 21(18), 6919. doi:10.3390/ijms21186919
  • Pagel, JF, Parnes, BN (2001). Medications for the treatment of sleep disorders: an overview. Primary Care Companion J Clin Psychiatry 3, 118–125.
  • Rahman, S. A., Wright, K. P., Jr., Lockley, S. W., Czeisler, C. A., & Gronfier, C. (2019). Characterizing the temporal dynamics of melatonin and cortisol changes in response to nocturnal light exposure. Scientific Reports, 9(1), 19720. doi:10.1038/s41598-019-54806-7
  • Rodríguez RM, Cortés-Espinar AJ, Soliz-Rueda JR, Feillet-Coudray C, Casas F, Colom-Pellicer M, Aragonès G, Avila-Román J, Muguerza B, Mulero M, et al. (2022). Time-of-day circadian modulation of grape-seed procyanidin extract (GSPE) in hepatic mitochondrial dynamics in cafeteria-diet-induced obese rats. Nutrients, 14, 774 https://doi.org/10.3390/nu14040774
  • Seay, D. J., & Thummel, C. S. (2011). The circadian clock, light, and cryptochrome regulate feeding and metabolism in Drosophila. Journal of Biological Rhythms, 26(6), 497–506. doi:10.1177/0748730411420080
  • Sitta, A., Ribas, G. S., Mescka, C. P., Barschak, A. G., Wajner, M., & Vargas, C. R. (2014). Neurological damage in MSUD: The role of oxidative stress. Cellular and Molecular Neurobiology, 34(2), 157–165. doi:10.1007/s10571-013-0002-0
  • Stoleru, D., Peng, Y., Agosto, J., & Rosbash, M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature, 431(7010), 862–868. doi:10.1038/nature02926
  • Strauss, K. A., Carson, V. J., Soltys, K., Young, M. E., Bowser, L. E., Puffenberger, E. G., Brigatti, K. W., Williams, K. B., Robinson, D. L., Hendrickson, C., Beiler, K., Taylor, C. M., Haas-Givler, B., Chopko, S., Hailey, J., Muelly, E. R., Shellmer, D. A., Radcliff, Z., Rodrigues, A., … Morton, D. H. (2020). Branched-chain alpha-ketoacid dehydrogenase deficiency (maple syrup urine disease): Treatment, biomarkers, and outcomes. Molecular Genetics and Metabolism, 129(3), 193–206. doi:10.1016/j.ymgme.2020.01.006
  • Xia, X., Fu, X., Wu, B., Zhu, J., & Zhao, Z. (2019). Circadian regulation of microRNA-target chimeras in Drosophila. bioRxiv, doi:10.1101/622183
  • Yao, Z., Bennett, A. J., Clem, A. L., & Shafer, O. T. (2016). The Drosophila clock neuron network features diverse coupling modes and requires network-wide coherence for robust circadian rhythms. Cell Reports, 17(11), 2873–2881. doi:10.1016/j.celrep.2016.11.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.