499
Views
1
CrossRef citations to date
0
Altmetric
Original Research Articles

Circadian gating of light-induced arousal in Drosophila sleep

& ORCID Icon
Pages 36-46 | Received 08 May 2022, Accepted 21 Nov 2022, Published online: 01 Dec 2022

References

  • Aguilar, J. I., Dunn, M., Mingote, S., Karam, C. S., Farino, Z. J., Sonders, M. S., Choi, S. J., Grygoruk, A., Zhang, Y., Cela, C., Choi, B. J., Flores, J., Freyberg, R. J., McCabe, B. D., Mosharov, E. V., Krantz, D. E., Javitch, J. A., Sulzer, D., Sames, D., Rayport, S., & Freyberg, Z. (2017). Neuronal depolarization drives increased dopamine synaptic vesicle loading via VGLUT. Neuron, 95(5), 1074–1088.e7. doi:10.1016/j.neuron.2017.07.038
  • Allada, R., Cirelli, C., & Sehgal, A. (2017). Molecular mechanisms of sleep homeostasis in flies and mammals. Cold Spring Harbor Perspectives in Biology, 9(8), a027730. doi:10.1101/cshperspect.a027730
  • Anafi, R. C., Kayser, M. S., & Raizen, D. M. (2019). Exploring phylogeny to find the function of sleep. Nature Reviews. Neuroscience, 20(2), 109–116. doi:10.1038/s41583-018-0098-9
  • Augustin, H., Grosjean, Y., Chen, K., Sheng, Q., & Featherstone, D. E. (2007). Nonvesicular release of glutamate by glial xCT transporters suppresses glutamate receptor clustering in vivo. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(1), 111–123. doi:10.1523/JNEUROSCI.4770-06.2007
  • Awasaki, T., Lai, S. L., Ito, K., & Lee, T. (2008). Organization and postembryonic development of glial cells in the adult central brain of Drosophila. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(51), 13742–13753. doi:10.1523/JNEUROSCI.4844-08.2008
  • Bahn, J. H., Lee, G., & Park, J. H. (2009). Comparative analysis of Pdf-mediated circadian behaviors between Drosophila melanogaster and D. virilis. Genetics, 181(3), 965–975. doi:10.1534/genetics.108.099069
  • Beckwith, E. J., & French, A. S. (2019). Sleep in Drosophila and its context. Frontiers in Physiology, 10, 1167. doi:10.3389/fphys.2019.01167
  • Blanchardon, E., Grima, B., Klarsfeld, A., Chelot, E., Hardin, P. E., Preat, T., & Rouyer, F. (2001). Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. The European Journal of Neuroscience, 13(5), 871–888. doi:10.1046/j.0953-816x.2000.01450.x
  • Bloomquist, B. T., Shortridge, R. D., Schneuwly, S., Perdew, M., Montell, C., Steller, H., Rubin, G., & Pak, W. L. (1988). Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell, 54(5), 723–733. doi:10.1016/S0092-8674(88)80017-5
  • Blum, I. D., Bell, B., & Wu, M. N. (2018). Time for bed: Genetic mechanisms mediating the circadian regulation of sleep. Trends in Genetics : TIG, 34(5), 379–388. doi:10.1016/j.tig.2018.01.001
  • Borbely, A. A., & Achermann, P. (1992). Concepts and models of sleep regulation: An overview. Journal of Sleep Research, 1(2), 63–79. doi:10.1111/j.1365-2869.1992.tb00013.x
  • Borbely, A. A., & Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. Journal of Biological Rhythms, 14(6), 557–568. doi:10.1177/074873099129000894
  • Cavanaugh, D. J., Geratowski, J. D., Wooltorton, J. R., Spaethling, J. M., Hector, C. E., Zheng, X., Johnson, E. C., Eberwine, J. H., & Sehgal, A. (2014). Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell, 157(3), 689–701. doi:10.1016/j.cell.2014.02.024
  • Chatterjee, A., Lamaze, A., De, J., Mena, W., Chelot, E., Martin, B., Hardin, P., Kadener, S., Emery, P., & Rouyer, F. (2018). Reconfiguration of a multi-oscillator network by light in the Drosophila circadian clock. Current Biology : CB, 28(13), 2007–2017.e4. doi:10.1016/j.cub.2018.04.064
  • Crocker, A., & Sehgal, A. (2008). Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 28(38), 9377–9385. doi:10.1523/JNEUROSCI.3072-08a.2008
  • Cusumano, P., Klarsfeld, A., Chelot, E., Picot, M., Richier, B., & Rouyer, F. (2009). PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila. Nature Neuroscience, 12(11), 1431–1437. doi:10.1038/nn.2429
  • Donlea, J. M. (2017). Neuronal and molecular mechanisms of sleep homeostasis. Current Opinion in Insect Science, 24, 51–57. doi:10.1016/j.cois.2017.09.008
  • Donlea, J. M., Pimentel, D., & Miesenbock, G. (2014). Neuronal machinery of sleep homeostasis in Drosophila. Neuron, 81(4), 860–872. doi:10.1016/j.neuron.2013.12.013
  • Donlea, J. M., Pimentel, D., Talbot, C. B., Kempf, A., Omoto, J. J., Hartenstein, V., & Miesenbock, G. (2018). Recurrent circuitry for balancing sleep need and sleep. Neuron, 97(2), 378–389.e4. doi:10.1016/j.neuron.2017.12.016
  • Dubowy, C., & Sehgal, A. (2017). Circadian rhythms and sleep in Drosophila melanogaster. Genetics, 205(4), 1373–1397. doi:10.1534/genetics.115.185157
  • Emery, P., Stanewsky, R., Helfrich-Forster, C., Emery-Le, M., Hall, J. C., & Rosbash, M. (2000). Drosophila CRY is a deep brain circadian photoreceptor. Neuron, 26(2), 493–504. doi:10.1016/S0896-6273(00)81181-2
  • Flourakis, M., Kula-Eversole, E., Hutchison, A. L., Han, T. H., Aranda, K., Moose, D. L., White, K. P., Dinner, A. R., Lear, B. C., Ren, D., Diekman, C. O., Raman, I. M., & Allada, R. (2015). A Conserved bicycle model for circadian clock control of membrane excitability. Cell, 162(4), 836–848. doi:10.1016/j.cell.2015.07.036
  • Fogle, K. J., Parson, K. G., Dahm, N. A., & Holmes, T. C. (2011). CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science (New York, N.Y.), 331(6023), 1409–1413. doi:10.1126/science.1199702
  • Grima, B., Chelot, E., Xia, R., & Rouyer, F. (2004). Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature, 431(7010), 869–873. doi:10.1038/nature02935
  • Guo, F., Holla, M., Diaz, M. M., & Rosbash, M. (2018). A circadian output circuit controls sleep-wake arousal in Drosophila. Neuron, 100(3), 624–635.e4. doi:10.1016/j.neuron.2018.09.002
  • Guo, F., Yu, J., Jung, H. J., Abruzzi, K. C., Luo, W., Griffith, L. C., & Rosbash, M. (2016). Circadian neuron feedback controls the Drosophila sleep–activity profile. Nature, 536(7616), 292–297. doi:10.1038/nature19097
  • Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J., & Garrity, P. A. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454(7201), 217–220. doi:10.1038/nature07001
  • Hardin, P. E., & Panda, S. (2013). Circadian timekeeping and output mechanisms in animals. Current Opinion in Neurobiology, 23(5), 724–731. doi:10.1016/j.conb.2013.02.018
  • Head, L. M., Tang, X., Hayley, S. E., Goda, T., Umezaki, Y., Chang, E. C., Leslie, J. R., Fujiwara, M., Garrity, P. A., & Hamada, F. N. (2015). The influence of light on temperature preference in Drosophila. Current Biology : CB, 25(8), 1063–1068. doi:10.1016/j.cub.2015.02.038
  • Helfrich-Forster, C. (2020). Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. The Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 206(2), 259–272. doi:10.1007/s00359-019-01379-5
  • Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., & Pack, A. I. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25(1), 129–138. doi:10.1016/S0896-6273(00)80877-6
  • Hermann, C., Yoshii, T., Dusik, V., & Helfrich-Forster, C. (2012). Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster. The Journal of Comparative Neurology, 520(5), 970–987. doi:10.1002/cne.22742
  • Hermann-Luibl, C., & Helfrich-Forster, C. (2015). Clock network in Drosophila. Current Opinion in Insect Science, 7, 65–70. doi:10.1016/j.cois.2014.11.003
  • Kanaya, H. J., Park, S., Kim, J. H., Kusumi, J., Krenenou, S., Sawatari, E., Sato, A., Lee, J., Bang, H., Kobayakawa, Y., Lim, C., & Itoh, T. Q. (2020). A sleep-like state in Hydra unravels conserved sleep mechanisms during the evolutionary development of the central nervous system. Science Advances., 6(41), eabb9415. doi:10.1126/sciadv.abb9415
  • Kayser, M. S., Mainwaring, B., Yue, Z., & Sehgal, A. (2015). Sleep deprivation suppresses aggression in Drosophila. eLife, 4, e07643. doi:10.7554/eLife.07643
  • Kim, J. H., Ki, Y., Lee, H., Hur, M. S., Baik, B., Hur, J. H., Nam, D., & Lim, C. (2020). The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission. Communications Biology, 3(1), 174. doi:10.1038/s42003-020-0902-8
  • Kozlov, A., & Nagoshi, E. (2019). Decoding Drosophila circadian pacemaker circuit. Current Opinion in Insect Science, 36, 33–38. doi:10.1016/j.cois.2019.06.010
  • Kunst, M., Tso, M. C., Ghosh, D. D., Herzog, E. D., & Nitabach, M. N. (2015). Rhythmic control of activity and sleep by class B1 GPCRs. Critical Reviews in Biochemistry and Molecular Biology, 50(1), 18–30. doi:10.3109/10409238.2014.985815
  • Lamaze, A., Kratschmer, P., Chen, K. F., Lowe, S., & Jepson, J. E. C. (2018). A wake-promoting circadian output circuit in Drosophila. Current Biology : CB, 28(19), 3098–3105.e3. doi:10.1016/j.cub.2018.07.024
  • Lear, B. C., Lin, J. M., Keath, J. R., McGill, J. J., Raman, I. M., & Allada, R. (2005). The ion channel narrow abdomen is critical for neural output of the Drosophila circadian pacemaker. Neuron, 48(6), 965–976. doi:10.1016/j.neuron.2005.10.030
  • Li, M. T., Cao, L. H., Xiao, N., Tang, M., Deng, B., Yang, T., Yoshii, T., & Luo, D. G. (2018). Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila. Nature Communications, 9(1), 4247. doi:10.1038/s41467-018-06506-5
  • Liang, X., Holy, T. E., & Taghert, P. H. (2016). Synchronous Drosophila circadian pacemakers display nonsynchronous Ca(2)(+) rhythms in vivo. Science (New York, N.Y.), 351(6276), 976–981. doi:10.1126/science.aad3997
  • Lim, C., & Allada, R. (2013). Emerging roles for post-transcriptional regulation in circadian clocks. Nature Neuroscience, 16(11), 1544–1550. doi:10.1038/nn.3543
  • Liu, S., Liu, Q., Tabuchi, M., & Wu, M. N. (2016). Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell, 165(6), 1347–1360. doi:10.1016/j.cell.2016.04.013
  • Mazzotta, G. M., Damulewicz, M., & Cusumano, P. (2020). Better sleep at night: How light influences sleep in Drosophila. Frontiers in Physiology, 11, 997. doi:10.3389/fphys.2020.00997
  • Moses, K., Ellis, M. C., & Rubin, G. M. (1989). The glass gene encodes a zinc-finger protein required by Drosophila photoreceptor cells. Nature, 340(6234), 531–536. doi:10.1038/340531a0
  • Nath, R. D., Bedbrook, C. N., Abrams, M. J., Basinger, T., Bois, J. S., Prober, D. A., Sternberg, P. W., Gradinaru, V., & Goentoro, L. (2017). The jellyfish cassiopea exhibits a sleep-like state. Current Biology : CB, 27(19), 2984–2990.e3. doi:10.1016/j.cub.2017.08.014
  • Parisky, K. M., Agosto, J., Pulver, S. R., Shang, Y., Kuklin, E., Hodge, J. J. L., Kang, K., Kang, K., Liu, X., Garrity, P. A., Rosbash, M., & Griffith, L. C. (2008). PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron, 60(4), 672–682. doi:10.1016/j.neuron.2008.10.042
  • Pfeiffenberger, C., Lear, B. C., Keegan, K. P., & Allada, R. (2010). Processing sleep data created with the Drosophila Activity Monitoring (DAM) System. Cold Spring Harbor Protocols, 2010(11), pdb prot5520. doi:10.1101/pdb.prot5520
  • Picot, M., Cusumano, P., Klarsfeld, A., Ueda, R., & Rouyer, F. (2007). Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biology, 5(11), e315. doi:10.1371/journal.pbio.0050315
  • Pimentel, D., Donlea, J. M., Talbot, C. B., Song, S. M., Thurston, A. J. F., & Miesenbock, G. (2016). Operation of a homeostatic sleep switch. Nature, 536(7616), 333–337. doi:10.1038/nature19055
  • Renn, S. C., Park, J. H., Rosbash, M., Hall, J. C., & Taghert, P. H. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell, 99(7), 791–802. doi:10.1016/S0092-8674(00)81676-1
  • Roeder, T. (2005). Tyramine and octopamine: Ruling behavior and metabolism. Annual Review of Entomology, 50, 447–477. doi:10.1146/annurev.ento.50.071803.130404
  • Roeder, T. (2020). The control of metabolic traits by octopamine and tyramine in invertebrates. Journal of Experimental Biology, 223(Pt 7), jeb194282. doi:10.1242/jeb.194282
  • Schlichting, M., Menegazzi, P., Lelito, K. R., Yao, Z., Buhl, E., Dalla Benetta, E., Bahle, A., Denike, J., Hodge, J. J., Helfrich-Forster, C., & Shafer, O. T. (2016). A neural network underlying circadian entrainment and photoperiodic adjustment of sleep and activity in Drosophila. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 36(35), 9084–9096. doi:10.1523/JNEUROSCI.0992-16.2016
  • Schubert, F. K., Hagedorn, N., Yoshii, T., Helfrich-Forster, C., & Rieger, D. (2018). Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system. The Journal of Comparative Neurology, 526(7), 1209–1231. doi:10.1002/cne.24406
  • Sekiguchi, M., Inoue, K., Yang, T., Luo, D. G., & Yoshii, T. (2020). A catalog of GAL4 drivers for labeling and manipulating circadian clock neurons in Drosophila melanogaster. Journal of Biological Rhythms, 35(2), 207–213. doi:10.1177/0748730419895154
  • Selcho, M., & Pauls, D. (2019). Linking physiological processes and feeding behaviors by octopamine. Current Opinion in Insect Science, 36, 125–130. doi:10.1016/j.cois.2019.09.002
  • Shafer, O. T., & Keene, A. C. (2021). The regulation of Drosophila sleep. Current Biology : CB, 31(1), R38–R49. doi:10.1016/j.cub.2020.10.082
  • Shafer, O. T., Helfrich-Forster, C., Renn, S. C., & Taghert, P. H. (2006). Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. The Journal of Comparative Neurology, 498(2), 180–193. doi:10.1002/cne.21021
  • Shang, Y., Griffith, L. C., & Rosbash, M. (2008). Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 19587–19594. doi:10.1073/pnas.0809577105
  • Shang, Y., Haynes, P., Pirez, N., Harrington, K. I., Guo, F., Pollack, J., Hong, P., Griffith, L. C., & Rosbash, M. (2011). Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nature Neuroscience, 14(7), 889–895. doi:10.1038/nn.2860
  • Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science (New York, N.Y.), 287(5459), 1834–1837. doi:10.1126/science.287.5459.1834
  • Sheeba, V., Fogle, K. J., Kaneko, M., Rashid, S., Chou, Y. T., Sharma, V. K., & Holmes, T. C. (2008). Large ventral lateral neurons modulate arousal and sleep in Drosophila. Current Biology : CB, 18(20), 1537–1545. doi:10.1016/j.cub.2008.08.033
  • Sherer, L. M., Catudio Garrett, E., Morgan, H. R., Brewer, E. D., Sirrs, L. A., Shearin, H. K., Williams, J. L., McCabe, B. D., Stowers, R. S., & Certel, S. J. (2020). Octopamine neuron dependent aggression requires dVGLUT from dual-transmitting neurons. PLoS Genetics, 16(2), e1008609. doi:10.1371/journal.pgen.1008609
  • Stoleru, D., Peng, Y., Agosto, J., & Rosbash, M. (2004). Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature, 431(7010), 862–868. doi:10.1038/nature02926
  • Takagi, S., Cocanougher, B. T., Niki, S., Miyamoto, D., Kohsaka, H., Kazama, H., Fetter, R. D., Truman, J. W., Zlatic, M., Cardona, A., & Nose, A. (2017). Divergent connectivity of homologous command-like neurons mediates segment-specific touch responses in Drosophila. Neuron, 96(6), 1373–1387.e6. doi:10.1016/j.neuron.2017.10.030
  • Wheeler, D. A., Hamblen-Coyle, M. J., Dushay, M. S., & Hall, J. C. (1993). Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both. Journal of Biological Rhythms, 8(1), 67–94. doi:10.1177/074873049300800106
  • Zhang, L., Chung, B. Y., Lear, B. C., Kilman, V. L., Liu, Y., Mahesh, G., Meissner, R. A., Hardin, P. E., & Allada, R. (2010). DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila. Current Biology : CB, 20(7), 591–599. doi:10.1016/j.cub.2010.02.056
  • Zhang, Y., Liu, Y., Bilodeau-Wentworth, D., Hardin, P. E., & Emery, P. (2010). Light and temperature control the contribution of specific DN1 neurons to Drosophila circadian behavior. Current Biology : CB, 20(7), 600–605. doi:10.1016/j.cub.2010.02.044
  • Zheng, X., & Sehgal, A. (2012). Speed control: cogs and gears that drive the circadian clock. Trends in Neurosciences, 35(9), 574–585. doi:10.1016/j.tins.2012.05.007
  • Zimmerman, J. E., Chan, M. T., Lenz, O. T., Keenan, B. T., Maislin, G., & Pack, A. I. (2017). Glutamate is a wake-active neurotransmitter in Drosophila melanogaster. Sleep, 40(2), zsw046. doi:10.1093/sleep/zsw046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.