364
Views
1
CrossRef citations to date
0
Altmetric
Original Research Articles

Evaluation of mouse behavioral responses to nutritive versus nonnutritive sugar using a deep learning-based 3D real-time pose estimation system

, , &
Pages 78-83 | Received 10 Oct 2022, Accepted 27 Jan 2023, Published online: 15 Feb 2023

References

  • Arac, A., Zhao, P., Dobkin, B. H., Carmichael, S. T., & Golshani, P. (2019). DeepBehavior: A deep learning toolbox for automated analysis of animal and human behavior imaging data. Frontiers in Systems Neuroscience, 13, 20. doi:10.3389/fnsys.2019.00020
  • Bachmanov, A. A., Reed, D. R., Beauchamp, G. K., & Tordoff, M. G. (2002). Food intake, water intake, and drinking spout side preference of 28 mouse strains. Behavior Genetics, 32(6), 435–443. doi:10.1023/a:1020884312053
  • Brierley, D. I., Samuels, J., Duncan, M., Whalley, B. J., & Williams, C. M. (2016). Cannabigerol is a novel, well-tolerated appetite stimulant in pre-satiated rats. Psychopharmacology, 233(19–20), 3603–3613. doi:10.1007/s00213-016-4397-4
  • Buchanan, K. L., Rupprecht, L. E., Kaelberer, M. M., Sahasrabudhe, A., Klein, M. E., Villalobos, J. A., Liu, W. W., Yang, A., Gelman, J., & Park, S. (2022). The preference for sugar over sweetener depends on a gut sensor cell. Nature Neuroscience, 25(2):191–200.
  • Calhoun, A. J., Pillow, J. W., & Murthy, M. (2019). Unsupervised identification of the internal states that shape natural behavior. Nature Neuroscience, 22(12), 2040–2049. doi:10.1038/s41593-019-0533-x
  • Craig, W. (1917). Appetites and aversions as constituents of instincts. Proceedings of the National Academy of Sciences of the United States of America, 3(12), 685–688. doi:10.1073/pnas.3.12.685
  • Damak, S., Rong, M., Yasumatsu, K., Kokrashvili, Z., Varadarajan, V., Zou, S., Jiang, P., Ninomiya, Y., & Margolskee, R. F. (2003). Detection of sweet and umami taste in the absence of taste receptor T1r3. Science, 301(5634), 850–853. doi:10.1126/science.1087155
  • De Araujo, I. E., Oliveira-Maia, A. J., Sotnikova, T. D., Gainetdinov, R. R., Caron, M. G., Nicolelis, M. A., & Simon, S. A. (2008). Food reward in the absence of taste receptor signaling. Neuron, 57(6), 930–941. doi:10.1016/j.neuron.2008.01.032
  • Dus, M., Ai, M., & Suh, G. S. (2013). Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in Drosophila. Nature Neuroscience, 16(5), 526–528. doi:10.1038/nn.3372
  • Dus, M., Lai, J. S., Gunapala, K. M., Min, S., Tayler, T. D., Hergarden, A. C., Geraud, E., Joseph, C. M., & Suh, G. S. (2015). Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1), 139–151. doi:10.1016/j.neuron.2015.05.032
  • Dus, M., Min, S., Keene, A. C., Lee, G. Y., & Suh, G. S. (2011). Taste-independent detection of the caloric content of sugar in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11644–11649. doi:10.1073/pnas.1017096108
  • Ebina, T., Obara, K., Watakabe, A., Masamizu, Y., Terada, S.-I., Matoba, R., Takaji, M., Hatanaka, N., Nambu, A., Mizukami, H., Yamamori, T., & Matsuzaki, M. (2019). Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset. Proceedings of the National Academy of Sciences of the United States of America, 116(45), 22844–22850. Proceedings of the National Academy of Sciences, doi:10.1073/pnas.1903445116
  • Ellacott, K. L., Morton, G. J., Woods, S. C., Tso, P., & Schwartz, M. W. (2010). Assessment of feeding behavior in laboratory mice. Cell Metabolism, 12(1), 10–17. doi:10.1016/j.cmet.2010.06.001
  • Graving, J. M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B. R., & Couzin, I. D. (2019). DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife, 8, e47994. doi:10.7554/eLife.47994
  • Günel, S., Rhodin, H., Morales, D., Campagnolo, J., Ramdya, P., & Fua, P. (2019). DeepFly3D, a deep learning-based approach for 3D limb and appendage tracking in tethered, adult Drosophila. eLife, 8, e48571. doi:10.7554/eLife.48571
  • Hausmann, S. B., Vargas, A. M., Mathis, A., & Mathis, M. W. (2021). Measuring and modeling the motor system with machine learning. Current Opinion in Neurobiology, 70, 11–23. doi:10.1016/j.conb.2021.04.004
  • Karigo, T., Kennedy, A., Yang, B., Liu, M., Tai, D., Wahle, I. A., & Anderson, D. J. (2021). Distinct hypothalamic control of same-and opposite-sex mounting behaviour in mice. Nature, 589(7841), 258–263. doi:10.1038/s41586-020-2995-0
  • Kim, D.-G., Shin, A., Jeong, Y.-C., Park, S., & Kim, D. (2022). AVATAR: ai vision analysis for three-dimensional action in real-time. bioRxiv. doi: 10.1101/2021.12.31.474634
  • Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9), 1281–1289. doi:10.1038/s41593-018-0209-y
  • Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019). Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature Protocols, 14(7), 2152–2176. doi:10.1038/s41596-019-0176-0
  • O. Patsadu, C. Nukoolkit and B. Watanapa, “Human gesture recognition using Kinect camera,” 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE), Bangkok, Thailand, 2012, pp. 28–32, doi: 10.1109/JCSSE.2012.6261920.
  • Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S. S.-H., Murthy, M., & Shaevitz, J. W. (2019). Fast animal pose estimation using deep neural networks. Nature Methods, 16(1), 117–125. doi:10.1038/s41592-018-0234-5
  • Pereira, T. D., Shaevitz, J. W., & Murthy, M. (2020). Quantifying behavior to understand the brain. Nature Neuroscience, 23(12), 1537–1549. doi:10.1038/s41593-020-00734-z
  • Pereira, T. D., Tabris, N., Matsliah, A., Turner, D. M., Li, J., Ravindranath, S., Papadoyannis, E. S., Normand, E., Deutsch, D. S., Wang, Z. Y., McKenzie-Smith, G. C., Mitelut, C. C., Castro, M. D., D’Uva, J., Kislin, M., Sanes, D. H., Kocher, S. D., Wang, S. S.-H., Falkner, A. L., Shaevitz, J. W., & Murthy, M. (2022). SLEAP: A deep learning system for multi-animal pose tracking. Nature Methods, 19(4), 486–495. doi:10.1038/s41592-022-01426-1
  • Ren, X., Ferreira, J. G., Zhou, L., Shammah-Lagnado, S. J., Yeckel, C. W., & de Araujo, I. E. (2010). Nutrient selection in the absence of taste receptor signaling. Journal of Neuroscience, 30(23), 8012–8023. doi:10.1523/JNEUROSCI.5749-09.2010
  • Sauerbrei, B. A., Guo, J.-Z., Cohen, J. D., Mischiati, M., Guo, W., Kabra, M., Verma, N., Mensh, B., Branson, K., & Hantman, A. W. (2020). Cortical pattern generation during dexterous movement is input-driven. Nature, 577(7790), 386–391. doi:10.1038/s41586-019-1869-9
  • Schneider, A., Zimmermann, C., Alyahyay, M., Steenbergen, F., Brox, T., & Diester, I. (2022). 3D pose estimation enables virtual head fixation in freely moving rats. Neuron, 110(13), 2080–2093.e10. doi:10.1016/j.neuron.2022.04.019
  • Sherrington, C. (1906). The integrative action of the nervous system New York (NY): Scribner & Son.
  • Tan, H.-E., Sisti, A. C., Jin, H., Vignovich, M., Villavicencio, M., Tsang, K. S., Goffer, Y., & Zuker, C. S. (2020). The gut–brain axis mediates sugar preference. Nature, 580(7804), 511–516. doi:10.1038/s41586-020-2199-7
  • Tellez, L. A., Han, W., Zhang, X., Ferreira, T. L., Perez, I. O., Shammah-Lagnado, S. J., Van Den Pol, A. N., & De Araujo, I. E. (2016). Separate circuitries encode the hedonic and nutritional values of sugar. Nature Neuroscience, 19(3), 465–470. doi:10.1038/nn.4224

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.