909
Views
1
CrossRef citations to date
0
Altmetric
Original Research Articles

Starvation-induced sleep suppression requires the Drosophila brain nutrient sensor

ORCID Icon & ORCID Icon
Pages 70-77 | Received 03 Jul 2022, Accepted 12 Apr 2023, Published online: 02 Jun 2023

References

  • Barber, A. F., Fong, S. Y., Kolesnik, A., Fetchko, M., & Sehgal, A. (2021). Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proceedings of the National Academy of Sciences of the United States of America, 118(10), e2019826118. doi:10.1073/pnas.2019826118
  • Brunet Avalos, C., Maier, G. L., Bruggmann, R., & Sprecher, S. G. (2019). Single cell transcriptome atlas of the Drosophila larval brain. eLife, 8, e50354. doi:10.7554/eLife.50354
  • Campbell, S. S., & Tobler, I. (1984). Animal sleep: A review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews, 8(3), 269–300. doi:10.1016/0149-7634(84)90054-x
  • Cannell, E., Dornan, A. J., Halberg, K. A., Terhzaz, S., Dow, J. A. T., & Davies, S.-A. (2016). The corticotropin-releasing factor-like diuretic hormone 44 (DH44) and kinin neuropeptides modulate desiccation and starvation tolerance in Drosophila melanogaster. Peptides, 80, 96–107. doi:10.1016/j.peptides.2016.02.004
  • Cavanaugh, D. J., Geratowski, J. D., Wooltorton, J. R. A., Spaethling, J. M., Hector, C. E., Zheng, X., Johnson, E. C., Eberwine, J. H., & Sehgal, A. (2014). Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell, 157(3), 689–701. doi:10.1016/j.cell.2014.02.024
  • Dus, M., Ai, M., & Suh, G. S. B. (2013). Taste-independent nutrient selection is mediated by a brain-specific Na+/solute co-transporter in Drosophila. Nature Neuroscience, 16(5), 526–528. doi:10.1038/nn.3372
  • Dus, M., Lai, J. S.-Y., Gunapala, K. M., Min, S., Tayler, T. D., Hergarden, A. C., Geraud, E., Joseph, C. M., & Suh, G. S. B. (2015). Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron, 87(1), 139–151. doi:10.1016/j.neuron.2015.05.032
  • Hendricks, J. C., Finn, S. M., Panckeri, K. A., Chavkin, J., Williams, J. A., Sehgal, A., & Pack, A. I. (2000). Rest in Drosophila is a sleep-like state. Neuron, 25(1), 129–138. doi:10.1016/s0896-6273(00)80877-6
  • Horne, J. (2009). REM sleep, energy balance and ‘optimal foraging’. Neuroscience and Biobehavioral Reviews, 33(3), 466–474. doi:10.1016/j.neubiorev.2008.12.002
  • Hückesfeld, S., Schlegel, P., Miroschnikow, A., Schoofs, A., Zinke, I., Haubrich, A. N., Schneider-Mizell, C. M., Truman, J. W., Fetter, R. D., Cardona, A., & Pankratz, M. J. (2021). Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila. eLife, 10, e65745. doi:10.7554/eLife.65745
  • Jin, X., Tian, Y., Zhang, Z. C., Gu, P., Liu, C., & Han, J. (2021). A subset of DN1p neurons integrates thermosensory inputs to promote wakefulness via CNMa signaling. Current Biology, 31(10), 2075–2087.e2076. doi:10.1016/j.cub.2021.02.048
  • Keene, A. C., Duboué, E. R., McDonald, D. M., Dus, M., Suh, G. S. B., Waddell, S., & Blau, J. (2010). Clock and cycle limit starvation-induced sleep loss in Drosophila. Current Biology, 20(13), 1209–1215. doi:10.1016/j.cub.2010.05.029
  • King, A. N., Barber, A. F., Smith, A. E., Dreyer, A. P., Sitaraman, D., Nitabach, M. N., Cavanaugh, D. J., & Sehgal, A. (2017). A peptidergic circuit links the circadian clock to locomotor activity. Current Biology, 27(13), 1915–1927.e1915. doi:10.1016/j.cub.2017.05.089
  • Lee, G., & Park, J. H. (2004). Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetic hormone-encoding gene in Drosophila melanogaster. Genetics, 167(1), 311–323. doi:10.1534/genetics.167.1.311
  • Lei, Z., Henderson, K., & Keleman, K. (2022). A neural circuit linking learning and sleep in Drosophila long-term memory. Nature Communications, 13(1), 609. doi:10.1038/s41467-022-28256-1
  • Li, W., Wang, Z., Syed, S., Lyu, C., Lincoln, S., O'Neil, J., Nguyen, A. D., Feng, I., & Young, M. W. (2021). Chronic social isolation signals starvation and reduces sleep in Drosophila. Nature, 597(7875), 239–244. doi:10.1038/s41586-021-03837-0
  • Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. The New England Journal of Medicine, 249(1), 13–16. doi:10.1056/NEJM195307022490104
  • Murphy, K. R., Deshpande, S. A., Yurgel, M. E., Quinn, J. P., Weissbach, J. L., Keene, A. C., Dawson-Scully, K., Huber, R., Tomchik, S. M., & Ja, W. W. (2016). Postprandial sleep mechanics in Drosophila. eLife, 5, e19334. doi:10.7554/eLife.19334
  • Oh, Y., Lai, J. S.-Y., Mills, H. J., Erdjument-Bromage, H., Giammarinaro, B., Saadipour, K., Wang, J. G., Abu, F., Neubert, T. A., & Suh, G. S. B. (2019). A glucose-sensing neuron pair regulates insulin and glucagon in Drosophila. Nature, 574(7779), 559–564. doi:10.1038/s41586-019-1675-4
  • Oh, Y., Lai, J. S.-Y., Min, S., Huang, H.-W., Liberles, S. D., Ryoo, H. D., & Suh, G. S. B. (2021). Periphery signals generated by Piezo-mediated stomach stretch and Neuromedin-mediated glucose load regulate the Drosophila brain nutrient sensor. Neuron, 109(12), 1979–1995.e1976. doi:10.1016/j.neuron.2021.04.028
  • Palma, J.-A., Urrestarazu, E., & Iriarte, J. (2013). Sleep loss as risk factor for neurologic disorders: A review. Sleep Medicine, 14(3), 229–236. doi:10.1016/j.sleep.2012.11.019
  • Park, J.-Y., Dus, M., Kim, S., Abu, F., Kanai, M. I., Rudy, B., & Suh, G. S. B. (2016). Drosophila SLC5A11 mediates hunger by regulating K+ channel activity. Current Biology, 26(15), 1965–1974. doi:10.1016/j.cub.2016.08.027
  • Regalado, J. M., Cortez, M. B., Grubbs, J., Link, J. A., van der Linden, A., & Zhang, Y. (2017). Increased food intake after starvation enhances sleep in Drosophila melanogaster. Journal of Genetics and Genomics, 44(6), 319–326. doi:10.1016/j.jgg.2017.05.006
  • Sharma, S., & Kavuru, M. (2010). Sleep and metabolism: An overview. International Journal of Endocrinology, 2010, 1–12. doi:10.1155/2010/270832
  • Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287(5459), 1834–1837. doi:10.1126/science.287.5459.1834
  • Siegel, J. M. (2009). Sleep viewed as a state of adaptive inactivity. Nature Reviews. Neuroscience, 10(10), 747–753. doi:10.1038/nrn2697
  • Taheri, S., Lin, L., Austin, D., Young, T., & Mignot, E. (2004). Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLOS Medicine, 1(3), e62. doi:10.1371/journal.pmed.0010062
  • Thimgan, M. S., Suzuki, Y., Seugnet, L., Gottschalk, L., & Shaw, P. J. (2010). The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss. PLOS Biology, 8(8), e1000466. doi:10.1371/journal.pbio.1000466
  • White, K., Tahaoglu, E., & Steller, H. (1996). Cell killing by the Drosophila gene reaper. Science, 271(5250), 805–807. doi:10.1126/science.271.5250.805
  • Williams, J. A., Sathyanarayanan, S., Hendricks, J. C., & Sehgal, A. (2007). Interaction between sleep and the immune response in Drosophila: A role for the NFκB relish. Sleep, 30(4), 389–400. doi:10.1093/sleep/30.4.389
  • Xu, K., DiAngelo, J. R., Hughes, M. E., Hogenesch, J. B., & Sehgal, A. (2011). The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metabolism, 13(6), 639–654. doi:10.1016/j.cmet.2011.05.001
  • Xu, K., Zheng, X., & Sehgal, A. (2008). Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metabolism, 8(4), 289–300. doi:10.1016/j.cmet.2008.09.006
  • Yang, Z., Yu, Y., Zhang, V., Tian, Y., Qi, W., & Wang, L. (2015). Octopamine mediates starvation-induced hyperactivity in adult Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 112(16), 5219–5224. doi:10.1073/pnas.1417838112
  • Yu, Y., Huang, R., Ye, J., Zhang, V., Wu, C., Cheng, G., Jia, J., & Wang, L. (2016). Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife, 5, e15693. doi:10.7554/eLife.15693
  • Yurgel, M. E., Kakad, P., Zandawala, M., Nässel, D. R., Godenschwege, T. A., & Keene, A. C. (2019). A single pair of leucokinin neurons are modulated by feeding state and regulate sleep–metabolism interactions. PLOS Biology, 17(2), e2006409. doi:10.1371/journal.pbio.2006409
  • Zitnan, D., Sehnal, F., & Bryant, P. J. (1993). Neurons producing specific neuropeptides in the central nervous system of normal and pupariation-delayed Drosophila. Developmental Biology, 156(1), 117–135. doi:10.1006/dbio.1993.1063

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.