514
Views
1
CrossRef citations to date
0
Altmetric
Original Research Articles

A deep learning analysis of Drosophila body kinematics during magnetically tethered flight

, , &
Pages 47-56 | Received 02 Jun 2022, Accepted 01 May 2023, Published online: 18 May 2023

References

  • Bender, J. A., & Dickinson, M. H. (2006a). A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster. The Journal of Experimental Biology, 209(Pt 23), 4597–4606. doi:10.1242/jeb.02583
  • Bender, J. A., & Dickinson, M. H. (2006b). Visual stimulation of saccades in magnetically tethered Drosophila. The Journal of Experimental Biology, 209(Pt 16), 3170–3182. doi:10.1242/jeb.02369
  • Berthé, R., & Lehmann, F.-O. (2015). Body appendages fine-tune posture and moments in freely maneuvering fruit flies. The Journal of Experimental Biology, 218(Pt 20), 3295–3307. doi:10.1242/jeb.122408
  • Burton, G. J., & Moorhead, I. R. (1987). Color and spatial structure in natural scenes. Applied Optics, 26(1), 157–170. doi:10.1364/AO.26.000157
  • Busch, C., Borst, A., & Mauss, A. S. (2018). Bi-directional control of walking behavior by horizontal optic flow sensors. Current Biology : CB, 28(24), 4037–4045.e5. doi:10.1016/j.cub.2018.11.010
  • Cellini, B., Salem, W., & Mongeau, J.-M. (2022). Complementary feedback control enables effective gaze stabilization in animals. Proceedings of the National Academy of Sciences of the United States of America, 119(19), e2121660119. doi:10.1073/pnas.2121660119
  • Collett, T. S. (1980). Angular tracking and the optomotor response - An analysis of visual reflex interaction in a hoverfly. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 140(2), 145–158. doi:10.1007/BF00606306
  • Collett, T. S., & Land, M. F. (1975). Visual control of flight behaviour in the hoverfly Syritta pipiens L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 99(1), 1–66. doi:10.1007/BF01464710
  • Dickinson, M. H., & Lighton, J. R. (1995). Muscle efficiency and elastic storage in the flight motor of Drosophila. Science, 268(5207), 87–90. doi:10.1126/science.7701346
  • Duistermars, B. J., & Frye, M. (2008). A magnetic tether system to investigate visual and olfactory mediated flight control in Drosophila. Journal of Visualized Experiments, 21(21), e1063. doi:10.3791/1063-v
  • Fenk, L. M., Kim, A. J., & Maimon, G. (2021). Suppression of motion vision during course-changing, but not course-stabilizing, navigational turns. Current Biology : CB, 31(20), 4608–4619.e3. doi:10.1016/j.cub.2021.09.068
  • Fenk, L. M., Poehlmann, A., & Straw, A. D. (2014). Asymmetric processing of visual motion for simultaneous object and background responses. Current Biology : CB, 24(24), 2913–2919. doi:10.1016/j.cub.2014.10.042
  • Fujiwara, T., Cruz, T. L., Bohnslav, J. P., & Chiappe, M. E. (2017). A faithful internal representation of walking movements in the Drosophila visual system. Nature Neuroscience, 20(1), 72–81. doi:10.1038/nn.4435
  • Götz, K. G. (1965). Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Biological Cybernetics, 2, 215–221.
  • Götz, K. G. (1968). Flight control in Drosophila by visual perception of motion. Kybernetik, 4(6), 199–208. doi:10.1007/BF00272517
  • Götz, K. G. (1987). Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. Journal of Experimental Biology, 128(1), 35–46. doi:10.1242/jeb.128.1.35
  • Götz, K. G., Hengstenberg, B., & Biesinger, R. (1979). Optomotor control of wing beat and body posture in Drosophila. Biological Cybernetics, 35(2), 101–112. doi:10.1007/BF00337435
  • Götz, K., & Wenking, H. (1973). Visual control of locomotion in the walking fruit fly Drosophila. Journal of Comparative Physiology, 85(3), 235–266. doi:10.1007/BF00694232
  • Haikala, V., Joesch, M., Borst, A., & Mauss, A. S. (2013). Optogenetic control of fly optomotor responses. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(34), 13927–13934. doi:10.1523/JNEUROSCI.0340-13.2013
  • Hassenstein, B. (1951). Ommatidienraster und afferente Bewegungsintegration. Zeitschrift Für Vergleichende Physiologie, 33(4), 301–326. doi:10.1007/BF00339334
  • Hassenstein, B., & Hustert, R. (1999). Hiding responses of locusts to approaching objects. Journal of Experimental Biology, 202(12), 1701–1710. doi:10.1242/jeb.202.12.1701
  • Heisenberg, M., & Wolf, R. (1979). On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. Journal of Comparative Physiology ? A, 130(2), 113–130. doi:10.1007/BF00611046
  • Hengstenberg, R. (1991). Head posture, body posture and gaze movements in the resting and flying fruitfly Drosophila. In: Synapse - Transmission Modulation. Eds. Elsner N. and Penzlin H.
  • Henning, M., Ramos-Traslosheros, G., Gür, B., & Silies, M. (2022). Populations of local direction–selective cells encode global motion patterns generated by self-motion. Science Advances, 8(3), eabi7112. doi:10.1126/sciadv.abi7112
  • Huber, S. A., & Bülthoff, H. H. (1998). Simulation and robot implementation of visual orientation behaviors of flies. In R. Pfeifer, B. Blumberg, J.-A. Meyer, & S. Wilson (Eds.), From Animals to Animats 5: 5th International Conference on Simulation of Adaptive Behavior (pp. 77–85). MIT Press.
  • Kennedy, J. S. (1940). The visual responses of flying mosquitoes. Proceedings of the Zoological Society of London, A109(4), 221–242. doi:10.1111/j.1096-3642.1940.tb00831.x
  • Kim, A. J., Fenk, L. M., Lyu, C., & Maimon, G. (2017). Quantitative predictions orchestrate visual signaling in Drosophila. Cell, 168(1-2), 280–294.e12. doi:10.1016/j.cell.2016.12.005
  • Kim, A. J., Fitzgerald, J. K., & Maimon, G. (2015). Cellular evidence for efference copy in Drosophila visuomotor processing. Nature Neuroscience, 18(9), 1247–1255. doi:10.1038/nn.4083
  • Kim, H., Park, H., Lee, J., & Kim, A. J. (2023). A visuomotor circuit for evasive flight turns in Drosophila. Current Biology : CB, 33(2), 321–335.e6. doi:10.1016/j.cub.2022.12.014
  • Land, M. F. (1973). Head movement of flies during visually guided flight. Nature, 243(5405), 299–300. doi:10.1038/243299a0
  • Land, M. F. (1999). Motion and vision: Why animals move their eyes. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 185(4), 341–352. doi:10.1007/s003590050393
  • Maimon, G., Straw, A. D., & Dickinson, M. H. (2008). A simple vision-based algorithm for decision making in flying Drosophila. Current Biology : CB, 18(6), 464–470. doi:10.1016/j.cub.2008.02.054
  • Maisak, M. S., Haag, J., Ammer, G., Serbe, E., Meier, M., Leonhardt, A., Schilling, T., Bahl, A., Rubin, G. M., Nern, A., Dickson, B. J., Reiff, D. F., Hopp, E., & Borst, A. (2013). A directional tuning map of Drosophila elementary motion detectors. Nature, 500(7461), 212–216. doi:10.1038/nature12320
  • Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9), 1281–1289. doi:10.1038/s41593-018-0209-y
  • Mayer, M., Vogtmann, K., Bausenwein, B., Wolf, R., & Heisenberg, M. (1988). Flight control during ‘free yaw turns’ in Drosophila melanogaster. Journal of Comparative Physiology A, 163(3), 389–399. doi:10.1007/BF00604014
  • Melnattur, K. V., Pursley, R., Lin, T.-Y., Ting, C.-Y., Smith, P. D., Pohida, T., & Lee, C.-H. (2014). Multiple redundant medulla projection neurons mediate color vision in Drosophila. Journal of Neurogenetics, 28(3-4), 374–388. doi:10.3109/01677063.2014.891590
  • Mongeau, J.-M., & Frye, M. A. (2017). Drosophila Spatiotemporally Integrates Visual Signals to Control Saccades. Current Biology: CB, 27(19), 2901–2914.e2. doi:10.1016/j.cub.2017.08.035
  • Muijres, F. T., Elzinga, M. J., Melis, J. M., & Dickinson, M. H. (2014). Flies evade looming targets by executing rapid visually directed banked turns. Science, 344(6180), 172–177. doi:10.1126/science.1248955
  • Muijres, F. T., Elzinga, M. J., Iwasaki, N. A., & Dickinson, M. H. (2015). Body saccades of Drosophila consist of stereotyped banked turns. The Journal of Experimental Biology, 218(Pt 6), 864–875. doi:10.1242/jeb.114280
  • Odenthal, L., Doussot, C., Meyer, S., & Bertrand, O. J. N. (2020). Analysing head-thorax choreography during free-flights in bumblebees. Frontiers in Behavioral Neuroscience, 14, 610029. https://www.frontiersin.org/articles/ doi:10.3389/fnbeh.2020.610029
  • Otsuna, H., Shinomiya, K., & Ito, K. (2014). Parallel neural pathways in higher visual centers of the Drosophila brain that mediate wavelength-specific behavior. Frontiers in Neural Circuits, 8, 8. doi:10.3389/fncir.2014.00008
  • Poggio, T., & Reichardt, W. (1973). A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik, 12(4), 185–203. doi:10.1007/BF00270572
  • Reichardt, W., & Poggio, T. (1976). Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quarterly Reviews of Biophysics, 9(3), 311–375. doi:10.1017/s0033583500002523
  • Reichardt, W., & Wenking, H. (1969). Optical detection and fixation of objects by fixed flying flies. Die Naturwissenschaften, 56(8), 424–425. doi:10.1007/BF00593644
  • Reiser, M. B., & Dickinson, M. H. (2008). A modular display system for insect behavioral neuroscience. Journal of Neuroscience Methods, 167(2), 127–139. doi:10.1016/j.jneumeth.2007.07.019
  • Ryu, L., Kim, S. Y., & Kim, A. J. (2022). From photons to behaviors: neural implementations of visual behaviors in Drosophila. Frontiers in Neuroscience, 16, 883640. https://www.frontiersin.org/article/ doi:10.3389/fnins.2022.883640
  • Schilstra, C., & Hateren, J. H. v. (1998). Using miniature sensor coils for simultaneous measurement of orientation and position of small, fast-moving animals. Journal of Neuroscience Methods, 83(2), 125–131. doi:10.1016/s0165-0270(98)00069-7
  • Städele, C., Keleş, M. F., Mongeau, J.-M., & Frye, M. A. (2020). Non-canonical receptive field properties and neuromodulation of feature-detecting neurons in flies. Current Biology : CB, 30(13), 2508–2519.e6. doi:10.1016/j.cub.2020.04.069
  • Straw, A. D., & Dickinson, M. H. (2009). Motmot, an open-source toolkit for realtime video acquisition and analysis. Source Code for Biology and Medicine, 4, 5. doi:10.1186/1751-0473-4-5
  • Strother, J. A., Wu, S.-T., Wong, A. M., Nern, A., Rogers, E. M., Le, J. Q., Rubin, G. M., & Reiser, M. B. (2017). The emergence of directional selectivity in the visual motion pathway of Drosophila. Neuron, 94(1), 168–182.e10. doi:10.1016/j.neuron.2017.03.010
  • Tammero, L. F., & Dickinson, M. H. (2002). The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. The Journal of Experimental Biology, 205(Pt 3), 327–343. doi:10.1242/jeb.205.3.327
  • Tammero, L. F., Frye, M. A., & Dickinson, M. H. (2004). Spatial organization of visuomotor reflexes in Drosophila. The Journal of Experimental Biology, 207(Pt 1), 113–122. doi:10.1242/jeb.00724
  • Wu, M., Nern, A., Williamson, W. R., Morimoto, M. M., Reiser, M. B., Card, G. M., & Rubin, G. M. (2016). Visual projection neurons in the Drosophila lobula link feature detection to distinct behavioral programs. eLife, 5, e21022. doi:10.7554/eLife.21022
  • Zanker, J. (1988). How does lateral abdomen deflection contribute to flight control of Drosophila melanogaster? Journal of Comparative Physiology A, 162(5), 581–588. doi:10.1007/BF01342633
  • Zhang, S. W., Wang, X. A., Liu, Z. L., & Srinivasan, M. V. (1990). Visual tracking of moving targets by freely flying honeybees. Visual Neuroscience, 4(4), 379–386. doi:10.1017/s0952523800004582

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.