140
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Bond strength analysis of post-installed rebar with chemical adhesive in concrete mixed with marble powder and glass fiber

&
Pages 1014-1042 | Received 26 Mar 2023, Accepted 03 Aug 2023, Published online: 23 Aug 2023

References

  • Ganesh Prabhu G, Hyun JH, Kim YY. Effects of foundry sand as a fine aggregate in concrete production. Constr Build Mater. 2014;70:514–521. doi: 10.1016/j.conbuildmat.2014.07.070.
  • Adesina A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environmental Challenges. 2020, 1, p100004.
  • Aliabdo AA, Abd Elmoaty AEM, Auda EM. Re-use of waste marble dust in the production of cement and concrete. Constr Build Mater. 2014;50:28–41. doi: 10.1016/j.conbuildmat.2013.09.005.
  • Rana A, Kalla P, Csetenyi LJ. Sustainable use of marble slurry in concrete. J Cleaner Prod. 2015;94:304–311. doi: 10.1016/j.jclepro.2015.01.053.
  • Fernandes HR, Torres P, Agathopoulos S, et al. Utilization of solid wastes from granite cutting processing in porcelain industry. Al-Azhar Bulletin of Science March. 2003:33-43.
  • Demirel, B. The effect of the using waste marble dust as fine sand on the mechanical properties of the concrete. International journal of the physical sciences. 2010; 5(9): 1372–1380.
  • Corinaldesi V, Moriconi G, Naik TR. Characterization of marble powder for its use in mortar and concrete. Constr Build Mater. 2010;24(1):113–117. doi: 10.1016/j.conbuildmat.2009.08.013.
  • Gameiro F, de Brito J, Correia da Silva D. Durability performance of structural concrete containing fine aggregates from waste generated by marble quarrying industry. Eng Struct. 2014;59:654–662. doi: 10.1016/j.engstruct.2013.11.026.
  • Vardhan K, Siddique R, Goyal S. Strength, permeation and micro-structural characteristics of concrete incorporating waste marble. Constr Build Mater. 2019;203:45–55. doi: 10.1016/j.conbuildmat.2019.01.079.
  • Ferguson PM, Cowan HJ. Reinforced concrete fundamentals: SI version. 4th ed., metric ed. New York (NY): Wiley; 1981.
  • Somma G, Vit M, Frappa G, et al. A new cracking model for concrete ties reinforced with bars having different diameters and bond laws. Eng Struct. 2021;235:112026. doi: 10.1016/j.engstruct.2021.112026.
  • Darwin D, Dolan CW, Nilson AH. Design of concrete structures, 15th ed. New York (NY): McGraw-Hill Education; 2016.
  • Cook RA, Kunz J, Fuchs W, et al. Behavior and design of single adhesive anchors under tensile load in uncracked concrete. Structural J. 1998;95(1):9–26. doi: 10.14359/522.
  • Eligehausen R, Cook RA, Appl J. Behavior and design of adhesive bonded anchors. ACI Structural J. 2006;103:822–831.
  • Spada A, Giambanco G, Rizzo P. Elastoplastic damaging model for adhesive anchor systems. I: theoretical formulation and numerical implementation. J Eng Mech. 2011;137(12):854–861. doi: 10.1061/(ASCE)EM.1943-7889.0000287.
  • Cook RA. Behavior of chemically bonded anchors. J Struct Eng. 1993;119(9):2744–2762. doi: 10.1061/(ASCE)0733-9445(1993)119:9(2744).
  • Zavliaris KD, Kollias S, Speare PRS. An experimental study of adhesively bonded anchorages in concrete. Mag Concr Res. 1996;48(175):79–93. doi: 10.1680/macr.1996.48.175.79.
  • Cook RA, Konz RC. Factors influencing bond strength of adhesive anchors. Structural J. 2001;98(1):76–86. doi: 10.14359/10149.
  • Gesoglu M, Özturan T, Özel M, et al. Tensile behavior of post-installed anchors in plain and steel fiber-reinforced normal- and high-strength concretes. ACI Structural J. 2005;102:224–231.
  • Gurbuz T, Ilki A. Pullout performance of fully and partially bonded retrofit anchors in low-strength concrete. ACI Structural J. 2011;108:61–70.
  • Mahrenholtz C, Eligehausen R, Reinhardt H-W. Design of post-installed reinforcing bars as end anchorage or as bonded anchor. Eng Struct. 2015;100:645–655. doi: 10.1016/j.engstruct.2015.06.028.
  • Kim D-J, Kim MS, Yun GY, et al. Bond strength of steel deformed rebars embedded in artificial lightweight aggregate concrete. J Adhes Sci Technol. 2013;27(5–6):490–507. doi: 10.1080/01694243.2012.687552.
  • Hamad B, Hammoud R, Kunz J. Evaluation of bond strength of bonded-in or post-installed reinforcement. ACI Struct J. 2006;103:207–218. doi: 10.14359/15178.
  • Veludo J, Julio ENBS, Dias-da-Costa D. Compressive strength of micropile-to-grout connections. Constr Build Mater. 2012;26:172–179.
  • Mo YL, Chan J. Bond and slip of plain rebars in concrete. J Mater Civ Eng. 1996;8(4):208–211. doi: 10.1061/(ASCE)0899-1561(1996)8:4(208).
  • Chang JJ, Yeih W, Tsai CL. Enhancement of bond strength for epoxy-coated rebar using river sand. Constr Build Mater. 2002;16(8):465–472. doi: 10.1016/S0950-0618(02)00101-0.
  • Fang C, Lundgren K, Chen L, et al. Corrosion influence on bond in reinforced concrete. Cem Concr Res. 2004;34(11):2159–2167. doi: 10.1016/j.cemconres.2004.04.006.
  • De Anda L, Courtier C, Moehle JP. Bond strength of prefabricated epoxy-coated reinforcement. ACI Structural J. 2006;103:226–234.
  • Lachemi M, Bae S, Hossain KMA, et al. Steel–concrete bond strength of lightweight self-consolidating concrete. Mater Struct. 2009;42(7):1015–1023. doi: 10.1617/s11527-008-9440-4.
  • Tayeh BA, Bakar BHA, Johari MAM, et al. Flexural strength behavior of composite UHPFC - existing concrete. Adv Mater Res. 2013;701:32–36.
  • Moallemi Pour S, Alam MS. Investigation of compressive bond behavior of steel rebar embedded in concrete with partial recycled aggregate replacement. Structures. 2016;7:153–164. doi: 10.1016/j.istruc.2016.06.010.
  • Tayeh BA, El dada ZM, Shihada S, et al. Pull-out behavior of post installed rebar connections using chemical adhesives and cement based binders. J King Saud Univ – Eng Sci. 2019;31:332–339.
  • Assaad JJ, Gerges N, Issa CA. Bond to reinforcement of polymeric lightweight flowable concrete for structural applications. J Adhes Sci Technol. 2019;33:595–615.
  • Assaad JJ, Gerges N. Styrene-butadiene rubber modified cementitious grouts for embedding anchors in humid environments. Tunn Undergr Space Technol. 2019;84:317–325. doi: 10.1016/j.tust.2018.11.035.
  • Sakka FE, Assaad JJ, Hamzeh FR, et al. Thixotropy and interfacial bond strengths of polymer-modified printed mortars. Mater Struct. 2019;52(4):79. doi: 10.1617/s11527-019-1356-7.
  • Romero-Sánchez MD, Martín-Martínez JM. Effects of overhalogenation of a synthetic vulcanized styrene–butadiene rubber sole on its adhesion behavior. J Adhes Sci Technol. 2004;18(5):507–527. doi: 10.1163/156856104839266.
  • Romero-Sánchez MD, Pastor-Blas MM, Martín-Martínez JM. Chlorination of vulcanized SBR rubber by immersion or brushing in TCI solutions. J Adhes Sci Technol. 2001;15:1601–1619.
  • Pastor-Blas MM, Ferrándiz-Gómez TP, Martín-Martínez JM. Chlorination of vulcanized styrene-butadiene rubber using solutions of trichloroisocyanuric acid in different solvents. J Adhes Sci Technol. 2000;14(4):561–581. doi: 10.1163/156856100742744.
  • Lassalle VL, Failla MD, Vallés EM, et al. Chemical modification of styrene–butadiene–styrene co-polymer by grafting of N-carbamylmaleamic acid. J Adhes Sci Technol. 2004;18(15–16):1849–1860. doi: 10.1163/1568561042708359.
  • Zhang B, Benmokrane B. Pullout bond properties of fiber-reinforced polymer tendons to grout. Journal of materials in civil engineering. 2002; 14(5): 399–408.
  • Ren FF, Yang ZJ, Chen JF, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond-slip model. Constr Build Mater. 2010;24(3):361–370. doi: 10.1016/j.conbuildmat.2009.08.021.
  • Wu Z, Yang S, Zheng J, et al. Analytical solution for the pull-out response of FRP rods embedded in steel tubes filled with cement grout. Mater Struct. 2010;43(5):597–609. doi: 10.1617/s11527-009-9515-x.
  • ACI 355.4. Qualification of post-installed adhesive anchors in concrete (ACI 355.4–19) and commentary. Farmington Hills, MI: American Concrete Institute (ACI); 2019.
  • Bureau of Indian Standards (BIS). Ordinary Portland cement, 43 grade—specification. IS:8112, New Delhi; 2013
  • ASTM-C150/C150M. Standard specification for portland cement. West Conshohocken (PA): American Society for Testing and Materials; 2009.
  • Bureau of Indian Standards (BIS). Specification for coarse and fine aggregates from natural sources for concrete. IS:383, New Delhi, India; 1970
  • Bureau of Indian Standards (BIS). Indian Standard concrete mix proportioning–guidelines. IS:10262, New Delhi; 2009
  • Varadharajan S. Determination of mechanical properties and environmental impact due to inclusion of flyash and marble waste powder in concrete. Structures. 2020;25:613–630. doi: 10.1016/j.istruc.2020.03.040.
  • Ashish DK. Feasibility of waste marble powder in concrete as partial substitution of cement and sand amalgam for sustainable growth. J Build Eng. 2018;15:236–242. doi: 10.1016/j.jobe.2017.11.024.
  • Khyaliya RK, Kabeer KISA, Vyas AK. Evaluation of strength and durability of lean mortar mixes containing marble waste. Constr Build Mater. 2017;147:598–607. doi: 10.1016/j.conbuildmat.2017.04.199.
  • Rodrigues R, de Brito J, Sardinha M. Mechanical properties of structural concrete containing very fine aggregates from marble cutting sludge. Constr Build Mater. 2015;77:349–356. doi: 10.1016/j.conbuildmat.2014.12.104.
  • Mishra A, Pandey A, Maheshwari P, et al. Green cement for sustainable concrete using marble dust. Int J ChemTech Res. 2013;5:616–622.
  • Dhoka MC. Green concrete: using industrial waste of marble powder, quarry dust and paper pulp. Int J Eng Sci Invent. 2013;2:67–70.
  • Omar OM, Abd Elhameed GD, Sherif MA, et al. Influence of limestone waste as partial replacement material for sand and marble powder in concrete properties. HBRC J. 2012;8(3):193–203. doi: 10.1016/j.hbrcj.2012.10.005.
  • Hebhoub H, Aoun H, Belachia M, et al. Use of waste marble aggregates in concrete. Constr Build Mater. 2011;25(3):1167–1171. doi: 10.1016/j.conbuildmat.2010.09.037.
  • Ergün A. Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete. Constr Build Mater. 2011;25(2):806–812. doi: 10.1016/j.conbuildmat.2010.07.002.
  • Aruntaş HY, Gürü M, Dayı M, et al. Utilization of waste marble dust as an additive in cement production. Mater Des. 2010;31(8):4039–4042. doi: 10.1016/j.matdes.2010.03.036.
  • Uygunoğlu T, Topcu IB, Gencel O, et al. The effect of fly ash content and types of aggregates on the properties of pre-fabricated concrete interlocking blocks (PCIBs). Constr Build Mater. 2012;30:180–187. doi: 10.1016/j.conbuildmat.2011.12.020.
  • Bureau of Indian Standards (BIS). High strength deformed steel bars and wires for concrete reinforcement. IS:1786, New Delhi; 2008
  • Bureau of Indian Standards (BIS). Methods of sampling and analysis of concrete. IS:1199, New Delhi; 1959
  • Bureau of Indian Standards (BIS). Method of tests for strength of concrete. IS:516, New Delhi; 1959
  • C900, A. Standard test method for pullout strength of hardened concrete. 2013. American Society for Testing and Materials West Conshohocken, USA
  • Tassew ST, Lubell AS. Mechanical properties of glass fiber reinforced ceramic concrete. Constr Build Mater. 2014;51:215–224. doi: 10.1016/j.conbuildmat.2013.10.046.
  • Liu J, Jia Y, Wang J. Experimental study on mechanical and durability properties of glass and polypropylene fiber reinforced concrete. Fibers Polym. 2019;20(9):1900–1908. doi: 10.1007/s12221-019-1028-9.
  • Hilles MM, Ziara MM. Mechanical behavior of high strength concrete reinforced with glass fiber. Eng Sci Technol. 2019;22(3):920–928. doi: 10.1016/j.jestch.2019.01.003.
  • Moghadam MA, Izadifard RA. Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safe J. 2020;113:102978.
  • Papayianni I, Tsohos G, Oikonomou N, et al. Influence of superplasticizer type and mix design parameters on the performance of them in concrete mixtures. Cem Concr Compos. 2005;27(2):217–222. doi: 10.1016/j.cemconcomp.2004.02.010.
  • Vardhan K, Goyal S, Siddique R, et al. Mechanical properties and microstructural analysis of cement mortar incorporating marble powder as partial replacement of cement. Constr Build Mater. 2015;96:615–621. doi: 10.1016/j.conbuildmat.2015.08.071.
  • Munir MJ, Kazmi SMS, Wu Y-F. Efficiency of waste marble powder in controlling alkali–silica reaction of concrete: a sustainable approach. Constr Build Mater. 2017;154:590–599. doi: 10.1016/j.conbuildmat.2017.08.002.
  • Bonavetti VL, Rahhal VF, Irassar EF. Studies on the carbo aluminate formation in limestone filler-blended cements. Cem Concr Res. 2001;31(6):853–859. doi: 10.1016/S0008-8846(01)00491-4.
  • Lin C, Kanstad T, Jacobsen S, et al. Bonding property between fiber and cementitious matrix: a critical review. Constr Build Mater. 2023;378:131169. doi: 10.1016/j.conbuildmat.2023.131169.
  • Wang W-C, Wang H-Y, Chang K-H, et al. Effect of high temperature on the strength and thermal conductivity of glass fiber concrete. Constr Build Mater. 2020;245:118387. doi: 10.1016/j.conbuildmat.2020.118387.
  • Silva D, Gameiro F, de Brito J. Mechanical properties of structural concrete containing fine aggregates from waste generated by the marble quarrying industry. J Mater Civ Eng. 2014;26(6):04014008. doi: 10.1061/(ASCE)MT.1943-5533.0000948.
  • Ahmed KS, Shahjalal M, Siddique TA, et al. Bond strength of post-installed high strength deformed rebar in concrete. Case Stud Constr Mater. 2021;15:e00581. doi: 10.1016/j.cscm.2021.e00581.
  • American Concrete Institute (ACI). Bond and development of straight reinforcing bars in tension.” ACI 408-R03, Farmington Hills, MI; 2003
  • UBC Library Open Collections. Bond behaviour of fibre reinforced polymer (FRP) rebars in concrete; 2010. Available from: https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0062633
  • Islam K, Billah AM, Chowdhury MI, et al. Exploratory study on bond behavior of plain and sand coated stainless steel rebars in concrete. Structures. 2020;27:2365–2378. doi: 10.1016/j.istruc.2020.07.039.
  • Muntasir Billah AHM, Alam MS. Bond behavior of smooth and sand-coated shape memory alloy (SMA) rebar in concrete. Structures. 2016;5:186–195. doi: 10.1016/j.istruc.2015.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.