112
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of ethanolic and aqueous extracts of sponge gourd peels and their application for the prevention of mild steel corrosion in saline water

, , , & ORCID Icon
Pages 1081-1100 | Received 23 Mar 2023, Accepted 04 Aug 2023, Published online: 13 Aug 2023

References

  • Han X, Yang DY, Frangopol DM. Optimum maintenance of deteriorated steel bridges using corrosion resistant steel based on system reliability and life-cycle cost. Eng Struct. 2021;243:112633. doi: 10.1016/j.engstruct.2021.112633.
  • Feng J, Wang ZM, Zheng D, et al. Influence of dissolved oxygen on the corrosion of mild steel in a simulated cement pore solution under supercritical carbon dioxide. Const Build Mat. 2021;311:125270. doi: 10.1016/j.conbuildmat.2021.125270.
  • Umoren SA, Gasem ZM, Obot IB. Natural products for material protection: inhibition of mild steel corrosion by date palm seed extracts in acidic media. Ind Eng Chem Res. 2013;52(42):14855–14865. doi: 10.1021/ie401737u.
  • Wasim M, Djukic MB. External corrosion of oil and gas pipelines: a review of failure mechanisms and predictive preventions. J Nat Gas Sci Eng. 2022;100:104467. doi: 10.1016/j.jngse.2022.104467.
  • Li Y, Bai Z, Ding S, et al. Electrochemical techniques and mechanisms for the corrosion of metals and alloys in Sub- and supercritical aqueous systems. J Supercrit Flu. 2023;194:105835. doi: 10.1016/j.supflu.2022.105835.
  • Moretti G, Guidi F, Fabris F. Corrosion inhibition of the mild steel in 0.5MHCl by 2-butyl-hexahydropyrrolo[1,2-b][1,2]oxazole. Corros Sci. 2013;76:206–218. doi: 10.1016/j.corsci.2013.06.044.
  • Tiwari M, Gupta VK, Singh RA, et al. Donor − π−acceptor-type configured, dimethyl amino-based organic push − pull chromophores for effective reduction of mild steel corrosion loss in 1 M HCl. ACS Omega. 2018;3(4):4081–4093. doi: 10.1021/acsomega.8b00083.
  • Shukla SK, Quraishi MA, Prakash R. A self-doped conducting polymer “polyanthranilic acid”: an efficient corrosion inhibitor for mild steel in acidic solution. Corros Sci. 2008;50(10):2867–2872. doi: 10.1016/j.corsci.2008.07.025.
  • Verma C, Ebenso EE, Quraishi MA, et al. Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications. Mater Adv. 2021;2(12):3806–3850. doi: 10.1039/D0MA00681E.
  • Ji G, Dwivedi P, Sundaram S, et al. Inhibitive effect of chlorophytum borivilianum root extract on mild steel corrosion in HCl and H2SO4 solutions. Ind Eng Chem Res. 2013;52(31):10673–10681. doi: 10.1021/ie4008387.
  • Jha VK, Jana S, Pal S, et al. Thin-Film coating of the hydrophobic lotus leaf on copper by the floating film transfer method and investigation on the corrosion behavior of coated copper in saline water. Ind Eng Chem Res. 2023;62(1):85–95. doi: 10.1021/acs.iecr.2c03697.
  • Lahbib H, Hassen SB, Gerengi H, et al. Corrosion inhibition performance of dwarf palm and cynara cardunculus leaves extract for St37 steel in 15% H2SO4: a comparative study. J Adhes Sci Tech. 2021;35(7):691–722. doi: 10.1080/01694243.2020.1819701.
  • Srivastava M, Tiwari P, Srivastava SK, et al. Low-cost aqueous extract of Pisum sativum peels for inhibition of mild steel corrosion. J Mol Liq. 2018;254:357–368. doi: 10.1016/j.molliq.2018.01.137.
  • Pal S, Ji G, Lgaz H, et al. Lemon seeds as green coating material for mitigation of mild steel corrosion in acid media. J Mol Liq. 2020;316:113797. doi: 10.1016/j.molliq.2020.113797.
  • Singh SK, Kumar A, Ji G, et al. Electrochemical and computational examination of Camellia sinensis assamica biomolecules ability to retard mild steel corrosion in sodium chloride solutions. J. Bio Tribo Corros. 2022;8:1–13.
  • Kaur J, Saxena A, Berdimurodov E, et al. Euphorbia prostrata as an eco-friendly corrosion inhibitor for steel: electrochemical and DFT studies. Chem Pap. 2023;77(2):957–976. doi: 10.1007/s11696-022-02533-1.
  • Shekhar C, Jaiswal A, Ji G, et al. Ethanol extract of waste potato peels for corrosion inhibition of low carbon steel in chloride medium. Mater Today. 2021;44:2267–2272. doi: 10.1016/j.matpr.2020.12.368.
  • Umoren SA. Biomaterials for corrosion protection: evaluation of mustard seed extract as eco-friendly corrosion inhibitor for X60 steel in acid media. J Adhes Sci Tech. 2016;30(17):1858–1879. doi: 10.1080/01694243.2016.1168339.
  • Riaz U, Nwaoha C, Ashraf SM. Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers. Prog Org Coat. 2014;77(4):743–756. doi: 10.1016/j.porgcoat.2014.01.004.
  • Jian Y, Zhang J, Yang C, et al. Biological MWCNT/chitosan composite coating with outstanding anti-corrosion property for implants. Colloids Surf B Biointerfaces. 2023;225:113227. doi: 10.1016/j.colsurfb.2023.113227.
  • Sivakandhan C, Balaji R, Loganathan GB, et al. Investigation of mechanical behaviour on sponge/ridge gourd (Luffa aegyptiaca) natural fiber using epoxy and polyester resin. Mater Today. 2020;22:705–714. doi: 10.1016/j.matpr.2019.09.183.
  • Ichetaonye SI, Madufor IC, Yibowei ME, et al. Physico-mechanical properties of Luffa aegyptiaca fiber reinforced polymer matrix composite. OJCM. 2015;05(04):110–117. doi: 10.4236/ojcm.2015.54014.
  • Kao TH, Huang CW, Chen BH. Functional components in luffa cylindrica and their effects on anti-inflammation of macrophage cells. Food Chem. 2012;135(2):386–395. doi: 10.1016/j.foodchem.2012.04.128.
  • Kumar AKS, Zhang Y, Li D, et al. A mini-review: how reliable is the drop casting technique? Electrochem Comm. 2020;121:106867. doi: 10.1016/j.elecom.2020.106867.
  • Wang L, Wu L, Wang Y, et al. Drop casting based superhydrophobic and electrically conductive coating for high performance strain sensing. Nano Mater Sci. 2022;4(2):178–184. doi: 10.1016/j.nanoms.2021.12.005.
  • Srivastava M, Tiwari P, Srivastava SK, et al. Electrochemical investigation of irbesartan drug molecules as an inhibitor of mild steel corrosion in 1 M HCl and 0.5 M H2SO4 solutions. J Mol Liq. 2017;236:184–197. doi: 10.1016/j.molliq.2017.04.017.
  • Oguzie EE, Oguzie KL, Akalezi CO, et al. Natural products for materials protection: corrosion and microbial growth inhibition using capsicum frutescens biomass extracts. ACS Sustain Chem. Eng. 2013;1(2):214–225. doi: 10.1021/sc300145k.
  • Jaiswal A, Kumar A, Prakash R. Facile synthesis of doped CxNy QDs as photoluminescent matrix for direct detection of hydroquinone. Spectrochim Acta A Mol Biomol Spectrosc. 2021;246:119019. doi: 10.1016/j.saa.2020.119019.
  • Mallampati R, Tan KS, Valiyaveettil S. Utilization of corn fibers and luffa peels for extraction of pollutants from water. Int Biodeter Biodegr. 2015;103:8–15. doi: 10.1016/j.ibiod.2015.03.027.
  • Ibrahim MNM, Ahmed-Haras MR, Sipaut CS, et al. Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohydr Polym. 2010;80(4):1102–1110. doi: 10.1016/j.carbpol.2010.01.030.
  • Sharma R, Jaiswal A, Jha VK, et al. Drop cast coating of leather dye on copper and investigation of its corrosion behavior in sodium chloride solutions. Mater Today. 2022;62:2965–2969. doi: 10.1016/j.matpr.2022.02.571.
  • Tiwari P, Srivastava M, Mishra R, et al. Economic use of waste Musa paradisica peels for effective control of mild steel loss in aggressive acid solutions. J Environ Chem Eng. 2018;6(4):4773–4783. doi: 10.1016/j.jece.2018.07.016.
  • Zhuo K. Can the langmuir adsorption coefficient be used to derive the adsorption gibbs energy? J Mol Liq. 2022;367:120442. doi: 10.1016/j.molliq.2022.120442.
  • Zhang XL, Jiang ZH, Yao ZP, et al. Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corros Sci. 2009;51(3):581–587. doi: 10.1016/j.corsci.2008.12.005.
  • Chen C-Y, Yu C, Li H-J, et al. Adlay seed hull polysaccharide as a green corrosion inhibitor for mild steel in acid solution: surface analyses and theoretical calculations. New J Chem. 2021;45(45):21188–21198. doi: 10.1039/D1NJ04238F.
  • Singh MK, Gautam RK, Prakash R, et al. Mechanical properties and corrosion behavior of copper based hybrid composites synthesized by stir casting. Res Phys. 2019;13:102319. doi: 10.1016/j.rinp.2019.102319.
  • Singh P, Kumar M, Quraishi MA, et al. Bispyranopyrazoles as green corrosion inhibitors for mild steel in hydrochloric acid: experimental and theoretical approach. ACS Omega. 2018;3(9):11151–11162. doi: 10.1021/acsomega.8b01300.
  • Siva T, Ramadoss A, Sathiyanarayanan S. Emerging action of corrosion prevention based on sustained self-healing coatings. Surf Interf. 2021;26:101440. doi: 10.1016/j.surfin.2021.101440.
  • Raja PB, Fadaeinasab M, Qureshi AK, et al. Evaluation of green corrosion inhibition by alkaloid extracts of Ochrosia oppositifolia and isoreserpiline against mild steel in 1 M HCl medium. Ind Eng Chem Res. 2013;52(31):10582–10593. doi: 10.1021/ie401387s.
  • Jayakumar S, Nandakumar T, Vadivel M, et al. Corrosion inhibition of mild steel in 1 M HCl using tamarindus indica extract: electrochemical, surface and spectroscopic studies. J Adhes Sci. Tech. 2020;34(7):713–743. doi: 10.1080/01694243.2019.1681156.
  • Umoren SA, Obot IB, Gasem ZM. Adsorption and corrosion inhibition characteristics of strawberry fruit extract at steel/acids interfaces: experimental and theoretical approaches. Ionics. 2015;21(4):1171–1186. doi: 10.1007/s11581-014-1280-3.
  • Ji G, Prakash, R. Composites of donor-π-Acceptor type configured organic compound and porous ZnO nano sheets as corrosion inhibitors of copper in chloride environment. J Mol Liq. 2019;280:160–172. doi: 10.1016/j.molliq.2019.02.026.
  • Umoren SA, Solomon MM, Obot IB, et al. Comparative studies on the corrosion inhibition efficacy of ethanolic extracts of date palm leaves and seeds on carbon steel corrosion in 15% HCl solution. J Adhes Sci Tech. 2018;32(17):1934–1951. doi: 10.1080/01694243.2018.1455797.
  • H. Lgaz, R. Salghi, K. S. Bhat, A. Chaouiki Shubhalaxmi, S. Jodeh, Correlated experimental and theoretical study on inhibition behavior of novel quinoline derivatives for the corrosion of mild steel in hydrochloric acid solution. J Mol Liq. 2017;244:154–168. doi: 10.1016/j.molliq.2017.08.121.
  • Motte RD, Basilico E, Mingant R, et al. A study by electrochemical impedance spectroscopy and surface analysis of corrosion product layers formed during CO2 corrosion of low alloy steel. Corros Sci. 2020;172:108666. doi: 10.1016/j.corsci.2020.108666.
  • Macdonald JR. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J Electroanal Chem Interfacial Electrochem. 1987;223(1–2):25–50. doi: 10.1016/0022-0728(87)85249-X.
  • Imjjad A, Abbiche K, Mellaoui MD, et al. Corrosion inhibition of mild steel by aminobenzoic acid isomers in hydrochloric acid solution: efficiency and adsorption mechanisms. Appl Surf Sci. 2022;576:151780. doi: 10.1016/j.apsusc.2021.151780.
  • Kumar H, Yadav V, Saha S, Kang N. Adsorption and inhibition mechanism of efficient and environment friendly corrosion inhibitor for mild steel: experimental and theoretical study. J Mol Liq. 2021;338:116634. doi: 10.1016/j.molliq.2021.116634.
  • MacFarlane DR, Smedley SI. The dissolution mechanism of iron in chloride solutions. J Electrochem Soc. 1986;133(11):2240–2244. doi: 10.1149/1.2108381.
  • Bockris JOM, Yang B. The mechanism of corrosion inhibition of iron in acid solution by acetylenic alcohols. J Electrochem Soc. 1991;138(8):2237–2252. doi: 10.1149/1.2085956.
  • Mathur PB, Vasudevan T. Reaction rate studies for the corrosion of metals in acids—I, iron in mineral acids. Corrosion. 1982;38(3):171–178. doi: 10.5006/1.3579270.
  • Fontana MG. Corrosion engineering. 3rd ed. Singapore: McGraw-Hill International Edition; 2017. pp. 23–27.
  • Araujo AF, Ferreira MV, Felisberto MDV, et al. Corrosion resistance of a superelastic NiTi alloy coated with graphene–based coatings. Prog Org Coat. 2022;165:106727. doi: 10.1016/j.porgcoat.2022.106727.
  • Jia MY, Waterhouse GIN, Zhang J,Y, et al. Comparison of the corrosion protection of electro-spun and drop-cast polyaniline microfiber coatings on carbon steel. Synth Met. 2018;246:204–212. doi: 10.1016/j.synthmet.2018.10.016.
  • Barbouchi M, Benzidia B, Aouidate A, et al. Theoritcal modeling and experimental studies of terebinth extracts as green corrosion inhibitor for iron in 3% NaCl solution. J King Saud Univ. 2020;32(7):2995–3004. doi: 10.1016/j.jksus.2020.08.004.
  • Jha VK, Porwal V, Ji G, et al. Aqueous extract of Colocasia esculenta leaves for prevention of low carbon steel corrosion in 0.5 M NaCl. In: Arockiarajan A, Duraiselvam M, Raju R, Reddy NS, Satyanarayana K, editors. Recent advances in materials processing and characterization. Lecture notes in mechanical engineering. Singapore: Springer; 2022. pp. 137–148.
  • Guo Y, Su Y, Gu R, et al. Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating. Surf Coat Tech. 2020;401:126318. doi: 10.1016/j.surfcoat.2020.126318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.