117
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Effect of multipass friction stir processing on microstructure and mechanical properties of MIG welded joints of AA6082 and AA7075

, &
Pages 1062-1080 | Received 27 Mar 2023, Accepted 21 Aug 2023, Published online: 31 Aug 2023

References

  • Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003;341(1–2):307–310. doi: 10.1016/S0921-5093(02)00199-5.
  • Huang C, Wu Z, Huang R, et al. Mechanical properties of AA6082 in different tempers at low temperatures. IOP Conf Ser Mater Sci Eng. 2017;279:012002. doi: 10.1088/1757-899X/279/1/012002.
  • El-Batahgy A and Kutsuna M. Laser beam welding of AA5052, AA6082, and AA6061 aluminum alloys. Adv Mater Sci Eng. 2009;2009:1–9. doi: 10.1155/2009/974182.
  • Mastanaiah P, Sharma A, Madhusudhan Reddy G. Dissimilar friction stir welds in AA2219-AA6082 aluminium alloys: effect of process parameters on material inter-mixing, defect formation, and mechanical properties. Trans Indian Inst Met. 2016;69(7):1397–1415. doi: 10.1007/s12666-015-0694-6.
  • Mehdi H, Mishra RS. Modification of microstructure and mechanical properties of AA6082/ZrB2 processed by multipass friction stir processing. J Mater Eng Perform. 2023;32(1):285–295. doi: 10.1007/s11665-022-07080-0.
  • Elanchezhian C, Vijaya Ramnath B, Venkatesan P, et al. Parameter optimization of friction stir welding of AA7075-6062. Procedia Eng. 2014;97:775–782. doi: 10.1016/j.proeng.2014.12.308.
  • Mehdi H, Mishra RS. Microstructure and mechanical characterization of TIG-welded joint of AA6061 and AA7075 by friction stir processing. Proc Inst Mech Eng L J Mater Design Appl. 2021;235(11):2531–2546. doi: 10.1177/14644207211007882.
  • Deepan M, Pandey C, Saini N, et al. Estimation of strength and wear properties of Mg/SiC nanocomposite fabricated through FSP route. J Braz Soc Mech Sci Eng. 2017;39(11):4613–4622. doi: 10.1007/s40430-017-0757-1.
  • Thomas WM, et al. Friction stir butt welding. US Patent 5,460. 1991. p. 317.
  • Paidar M, Ojo OO, Ezatpour HR, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B C composite fabricated by accumulative roll bonding (ARB). Surf Coat Technol. 2019;361:159–169. doi: 10.1016/j.surfcoat.2019.01.043.
  • Sameer MD, Birru AK. Mechanical and metallurgical properties of friction stir welded dissimilar joints of AZ91 magnesium alloy and AA 6082-T6 aluminium alloy. J Magnes Alloy. 2019;7(2):264–271. doi: 10.1016/j.jma.2018.09.004.
  • Fu B, Qin G, Li F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy. J Mater Proc Technol. 2015;218:38–47. doi: 10.1016/j.jmatprotec.2014.11.039.
  • Moreira PMGP, Santos T, Tavares SMO, et al. Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Mater Des. 2009;30(1):180–187. doi: 10.1016/j.matdes.2008.04.042.
  • Taban E, Kaluc E. Microstructural and mechanical properties of double-sided MIG, TIG and friction stir welded 5083-H321 aluminium alloy. Kovove Mater. 2006;44:25–33.
  • Guo Y, Pan H, Ren L, et al. An investigation on plasma-MIG hybrid welding of 5083 aluminum alloy. Int J Adv Manuf Technol. 2018;98(5–8):1433–1440. doi: 10.1007/s00170-018-2206-4.
  • Mehdi H, Mishra RS. Investigation of mechanical properties and heat transfer of welded joint of AA6061 and AA7075 using TIG + FSP welding approach. J Adv Join Proc. 2020;1:100003. doi: 10.1016/j.jajp.2020.100003.
  • da Silva J, Costa JM, Loureiro A, et al. Fatigue behaviour of AA6082-T6 MIG welded butt joints improved by friction stir processing. Mater Des. 2013;51:315–322. doi: 10.1016/j.matdes.2013.04.026.
  • Jesus JS, Costa JM, Loureiro A, et al. Fatigue strength improvement of GMAW T-welds in AA 5083 by friction-stir processing. Int J Fatigue. 2017;97:124–134. doi: 10.1016/j.ijfatigue.2016.12.034.
  • Salah AN, Mabuwa S, Mehdi H, et al. Effect of multipass FSP on Si-rich TIG welded joint of dissimilar aluminum alloys AA8011-H14 and AA5083-H321: EBSD and microstructural evolutions. Silicon. 2022;14(15):9925–9941. doi: 10.1007/s12633-022-01717-4.
  • Shamanian M, Mostaan H, Safari M, et al. Friction stir modification of GTA 7075-T6 Al alloy weld joints: EBSD study and microstructural evolutions. Arch Civil Mech Eng. 2017;17(3):574–585. doi: 10.1016/j.acme.2017.01.002.
  • Orozco-Caballero A, Álvarez-Leal M, Verdera D, et al. Evaluation of the mechanical anisotropy and the deformation mechanism in a multi-pass friction stir processed Al-Zn-Mg-Cu alloy. Mater Des. 2017;125:116–125. doi: 10.1016/j.matdes.2017.03.081.
  • Luo XC, Zhang DT, Zhang WW, et al. Tensile properties of AZ61 magnesium alloy produced by multi-pass friction stir processing: Effect of sample orientation. Mater Sci Eng A. 2018;725:398–405. doi: 10.1016/j.msea.2018.04.017.
  • Luo XC, Zhang DT, Cao GH, et al. High-temperature tensile behavior of AZ61 magnesium plate prepared by multi-pass friction stir processing. Mater Sci Eng A. 2019;759:234–240. doi: 10.1016/j.msea.2019.05.050.
  • Meenia S, Khan MD, Babu S, et al. Particle refinement and finegrain formation leading to enhanced mechanical behaviour in a hypo–eutectic Al–Si alloy subjected to multi–pass friction stir processing. Mater Charact. 2016;113:134–143. doi: 10.1016/j.matchar.2016.01.011.
  • Nadammal N, Kailas SV, Szpunar J, et al. Development of microstructure and texture during single and multiple pass friction stir processing of a strain hardenable aluminium alloy. Mater Charact. 2018;140:134–146. doi: 10.1016/j.matchar.2018.03.044.
  • Mehdi H, Mishra RS. Influence of friction stir processing on weld temperature distribution and mechanical properties of TIG-welded joint of AA6061 and AA7075. Trans Indian Inst Met. 2020;73(7):1773–1788. doi: 10.1007/s12666-020-01994-w.
  • Mabuwa S, Msomi V. Fatigue behaviour of the multi-pass friction stir processed AA8011-H14 and AA6082-T651 dissimilar joints. Eng Fail Anal. 2020;118:104876. doi: 10.1016/j.engfailanal.2020.104876.
  • Garg A, Raturi M, Bhattacharya A. Experimental and finite element analysis of progressive failure in friction stir welded AA6061-AA7075 joints. Proc Struct Integrity. 2019;17:456–463. doi: 10.1016/j.prostr.2019.08.060.
  • Omar SS, Hengan OU, Xingguo W, et al. Microstructure and mechanical properties of friction stir welded AA6092/SiC metal matrix composite. Mater Scie Eng A. 2019;742:78–88. doi: 10.1016/j.msea.2018.10.116.
  • Vasava A, Singh D. Effect of different volume ratios of SiC and TiO2 reinforcement particles on Mono and hybrid surface composites of AA7075-T651 through friction stir processing. J Adhes Sci Technol. 2023;1–20. doi: 10.1080/01694243.2023.2197681.
  • Vasava A, Singh D. Influence of various tool shoulder design on hybrid surface composite of AA7075-T651/SiC/graphene through friction stir processing. Can Metall Q. 2023;1–19. doi: 10.1080/00084433.2023.2193500.
  • Sarvaiya J, Singh D. Influence of hybrid pin profile on enhancing microstructure and mechanical properties of AA5052/SiC surface composites fabricated via friction stir processing. Can Metall Q. 2023;62(3):426–439. doi: 10.1080/00084433.2022.2114124.
  • El-Sayed MM, Shash AY, Abd-Rabou M, et al. Welding and processing of metallic materials by using friction stir technique: a review. J Adv Join Proc. 2021;3:100059. doi: 10.1016/j.jajp.2021.100059.
  • Butola R, Pandit D, Pratap C, et al. Two decades of friction stir processing–a review of advancements in composite fabrication. J Adhes Sci Technol. 2022;36(8):795–832. doi: 10.1080/01694243.2021.1938835.
  • Kumar Rajak D, Pagar DD, Menezes PL, et al. Friction-based welding processes: friction welding and friction stir welding. J Adhes Sci Technol. 2020;34(24):2613–2637. doi: 10.1080/01694243.2020.1780716.
  • Daniolos NM, Pantelis DI. Microstructural and mechanical properties of dissimilar friction stir welds between AA6082-T6 and AA7075-T651. Int J Adv Manuf Technol. 2017;88(9–12):2497–2505. doi: 10.1007/s00170-016-8965-x.
  • Vetrivel Sezhian M, Giridharan K, Peter Pushpanathan D, et al. Microstructural and mechanical behaviors of friction stirwelded dissimilar AA6082-AA7075 joints. Adv Mater Sci Eng. 2021;2021:1–13. doi: 10.1155/2021/4113895.
  • Cole EG, Fehrenbacher A, Duffie NA, et al. Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-t6 and 7075-t6. Int J Adv Manuf Technol. 2014;71(1–4):643–652. doi: 10.1007/s00170-013-5485-9.
  • Liu Y, Wang W, Xie J, et al. Microstructure and mechanical properties of aluminum 5083weldments by gas tungsten arc and gas metal arc welding. Mater Sci Eng A. 2012;549:7–13. doi: 10.1016/j.msea.2012.03.108.
  • Arbegast WJ. A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr Mater. 2008;58(5):372–376. doi: 10.1016/j.scriptamat.2007.10.031.
  • Zhang Z, Xiao BL, Wang D, et al. Effect of alclad layer on material flow and defect formation in friction-stir-welded 2024 aluminum alloy. Metall Mater Trans A. 2011;42(6):1717–1726. doi: 10.1007/s11661-010-0545-3.
  • Wang J, Zhou D, Xie L, et al. Effect of multi-pass friction stir processing on microstructures and mechanical behaviors of as-cast 2A14 aluminum alloy. J Mater Eng Perform. 2021;30(4):3033–3043. doi: 10.1007/s11665-021-05594-7.
  • Chen Y, Ding H, Cai Z, et al. Effect of initial base metal temper on microstructure and mechanical properties of friction stir processed Al-7B04 alloy. Mater Sci Eng A. 2016;650:396–403. doi: 10.1016/j.msea.2015.10.083.
  • Wang J, Yang K, Zhou D, et al. Investigation on the microstructures and mechanical properties of friction stir processed 2A14 aluminum alloy fabricated by different initial precipitation states. Int J Adv Manuf Technol. 2021;116(11–12):3549–3560. doi: 10.1007/s00170-021-07709-9.
  • He XC, Gu FS, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66. doi: 10.1016/j.pmatsci.2014.03.003.
  • Liu LM, Song G, Liang GL, et al. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B—mechanism and remedy. Mater Sci Eng A. 2005;390(1–2):76–80. doi: 10.1016/j.msea.2004.07.067.
  • Mehdi H, Mabuwa S, Msomi V, et al. Influence of friction stir processing on the mechanical and microstructure characterization of single and double V-Groove tungsten inert gas welded dissimilar aluminum joints. J Mater Eng Perform. 2022. doi: 10.1007/s11665-022-07659-7.
  • Naing TH, Muangjunburee P. Metallurgical and mechanical characterization of MIG welded repair joints for 6082-T6 aluminum alloy with ER 4043 and ER 5356. Trans Indian Inst Met. 2022;75(6):1583–1593. doi: 10.1007/s12666-022-02523-7.
  • Mehdi H, Jain S, Msomi V, et al. Effect of intermetallic compounds on mechanical and microstructural properties of dissimilar alloys Al-7Si/AZ91D. J Mater Eng Perform. 2023. doi: 10.1007/s11665-023-08302-9.
  • Moharami A, Razaghian A, Babaei B, et al. Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite. J Compos Mater. 2020;54(26):4035–4057. doi: 10.1177/0021998320925528.
  • Mabuwa S, Msomi V, Mehdi H, et al. Effect of material positioning on Si-rich TIG welded joints of AA6082 and AA8011 by friction stir processing. J Adhes Sci Technol. 2023;37(17):2484–2502. doi: 10.1080/01694243.2022.2142366.
  • Li C, Feng X, Shen Y, et al. Preparation of Al2O3/TiO2 particle-reinforced copper through plasma spraying and friction stir processing. Mater Design. 2016;90:922–930. doi: 10.1016/j.matdes.2015.11.047.
  • Shafiei-Zarghani A, Kashani-Bozorg SF, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A. 2009;500(1–2):84–91. doi: 10.1016/j.msea.2008.09.064.
  • Su JQ, Nelson TW, Mishra R, et al. Microstructural investigation friction stir welded 7050–T651 aluminium. Acta Mater. 2003;51(3):713–729. doi: 10.1016/S1359-6454(02)00449-4.
  • Barmouz M, Givi MKB. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior. Compos A Appl Sci Manufact. 2011;42(10):1445–1453. doi: 10.1016/j.compositesa.2011.06.010.
  • Su P, Gerlich A, North TH, et al. Material flow during friction stir spot welding. Sci Technol Weld Join. 2006;11(1):61–71. doi: 10.1179/174329306X77056.
  • Zhang Z, Chen DL. Consideration of orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scr Mater. 2006;54(7):1321–1326. doi: 10.1016/j.scriptamat.2005.12.017.
  • Chang CI, Lee CJ, Huang JC. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Mater. 2004;51(6):509–514. doi: 10.1016/j.scriptamat.2004.05.043.
  • Jain S, Mishra RS, Mehdi H. Influence of SiC microparticles and multi-pass FSW on weld quality of the AA6082 and AA5083 dissimilar joints. Silicon. 2023. doi: 10.1007/s12633-023-02455-x.
  • Bhatnagar S, Kumar G, Mehdi H, et al. Optimization of FSW parameters for enhancing dissimilar joint strength of AA7050 and AA6061 using response surface methodology (RSM). Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.04.144.
  • Chaurasia PK, Pandey C, Giri A, et al. Mahapatra, a comparative study of residual stress and mechanical properties for FSW and TIG weld on structural steel. Arch Metall Mater. 2018;63:1019–1029.
  • Tariq M, Khan I, Hussain G, et al. Microstructure and micro-hardness analysis of friction stir welded bi-layered laminated aluminum sheets. Int J Lightweight Mater Manuf. 2019;2(2):123–130. doi: 10.1016/j.ijlmm.2019.04.010.
  • Patel VV, Badheka V, Kumar A. Effect of polygonal pin profiles on friction stir processed superplasticity of AA7075 alloy. J Mater Process Technol. 2017;240:68–76. doi: 10.1016/j.jmatprotec.2016.09.009.
  • Qin H, Zhang H, Wu H. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy. Mater Sci Eng A. 2015;626:322–329. doi: 10.1016/j.msea.2014.12.026.
  • Pandey C, Saini N, Mohan Mahapatra M, et al. Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) grade 91 steel at room temperature for different heat treatment regimes. Eng Fail Anal. 2017;71:131–147. doi: 10.1016/j.engfailanal.2016.06.012.
  • Orłowska M, Brynk T, Hütter A, et al. Similar and dissimilar welds of ultrafine grained aluminium obtained by friction stir welding. Mater Sci Eng A. 2020;777:139076. doi: 10.1016/j.msea.2020.139076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.