200
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Development of self-healing functional micro-arc oxidation coating on magnesium alloys: a review

, ORCID Icon, , &
Pages 991-1013 | Received 30 May 2023, Accepted 21 Aug 2023, Published online: 01 Sep 2023

References

  • Walsh FC, Low CTJ, Wood RJK, et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys. Transactions of the IMF. 2009;87(3):122–135. doi: 10.1179/174591908X372482.
  • Wang L, Fu W, Chen L. Evolution of active species and discharge sparks in Na2SiO3 electrolyte during PEO process. J Alloys Compd. 2011;509(28):7652–7656. doi: 10.1016/j.jallcom.2011.04.130.
  • Tu W, Cheng Y, Wang X, et al. Plasma electrolytic oxidation of AZ31 magnesium alloy in aluminate-tungstate electrolytes and the coating formation mechanism. J Alloys Compd. 2017;725:199–216. doi: 10.1016/j.jallcom.2017.07.117.
  • Ghasemi A, Raja VS, Blawert C, et al. Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy. Surf Coat Technol. 2008;202(15):3513–3518. doi: 10.1016/j.surfcoat.2007.12.033.
  • Shao ZC, Zhang QF, Wang M, et al. Preparation of black coating on AM50 alloys by microarc oxidation (MAO). Mater Manuf Processes. 2014;29(9):1095–1100. doi: 10.1080/10426914.2014.921695.
  • Dou Q, Li W, Zhang G, et al. Preparation and characterisation of black ceramic coating on AZ91D magnesium alloy by plasma electrolytic oxidation with reduced energy consumption. Mater Res Innov. 2015;19(sup2):S2-23–S2-27. doi: 10.1179/1432891715Z.0000000001309.
  • Yao W, Wu L, Wang J, et al. Micro‐arc oxidation of magnesium alloys: a review. J Mater Sci Technol. 2022;118:158–180. doi: 10.1016/j.jmst.2021.11.053.
  • Curran JA, Clyne TW. Porosity in plasma electrolytic oxide coatings. Acta Mater. 2006;54(7):1985–1993. doi: 10.1016/j.actamat.2005.12.029.
  • Zeng Z, Salehi M, Kopp A, et al. Recent progress and perspectives in additive manufacturing of magnesium alloys. J Magnesium Alloys. 2022;10(6):1511–1541. doi: 10.1016/j.jma.2022.03.001.
  • Frignani A, Grassi V, Zanotto F, et al. Inhibition of AZ31 Mg alloy corrosion by anionic surfactants. Corros Sci. 2012;63:29–39. doi: 10.1016/j.corsci.2012.05.012.
  • Gao Y, Yerokhin A, Matthews A. Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings. Appl Surf Sci. 2014;316:558–567. doi: 10.1016/j.apsusc.2014.08.035.
  • Hussein RO, Northwood DO, Nie X. The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy. J Alloys Compd. 2012;541:41–48. doi: 10.1016/j.jallcom.2012.07.003.
  • Ezhilselvi V, Nithin J, Balaraju JN, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surf Coat Technol. 2016;288:221–229. doi: 10.1016/j.surfcoat.2016.01.040.
  • Yilmaz MS, Sahin O. Applying high voltage cathodic pulse with various pulse durations on aluminium via micro-arc oxidation (MAO). Surf Coat Technol. 2018;347:278–285. doi: 10.1016/j.surfcoat.2018.04.085.
  • Chen L, Zhao R, Qi H, et al. Influence of voltage modes on microstructure and corrosion resistance of micro-arc oxidation coating on magnesium alloy. J Adhes Sci Technol. 2023;37(15):2232–2246. doi: 10.1080/01694243.2022.2122294.
  • Dai W, Li C, He D, et al. Influence of duty cycle on fatigue life of AA2024 with thin coating fabricated by micro-arc oxidation. Surf Coat Technol. 2019;360:347–357. doi: 10.1016/j.surfcoat.2018.12.118.
  • An L-Y, Ma Y, Yan X-X, et al. Effects of electrical parameters and their interactions on plasma electrolytic oxidation coatings on aluminum substrates. Trans Nonferrous Met Soc China. 2020;30(4):883–895. doi: 10.1016/S1003-6326(20)65262-1.
  • Li Y, Guan Y, Zhang Z, et al. Enhanced bond strength for micro-arc oxidation coating on magnesium alloy via laser surface microstructuring. Appl Surf Sci. 2019;478:866–871. doi: 10.1016/j.apsusc.2019.02.041.
  • Jiang C, Wang Y, Wang S, et al. Achieving high-efficiency electrically insulating ceramic layer formed on SiCp/Al composite by bipolar pulsed PEO for novel integrated strategy. Surf Coat Technol. 2022;444:128692. doi: 10.1016/j.surfcoat.2022.128692.
  • Wang L, Zhou J, Liang J, et al. Thermal control coatings on magnesium alloys prepared by plasma electrolytic oxidation. Appl Surf Sci. 2013;280:151–155. doi: 10.1016/j.apsusc.2013.04.115.
  • Jiang Z, Zeng X, Yao Z. Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property. Rare Met. 2006;25(3):270–273. doi: 10.1016/S1001-0521(06)60052-1.
  • DA Silva Rodrigues J, Marasca Antonini L, Cunha Bastos A, et al. Corrosion resistance and tribological behavior of ZK30 magnesium alloy coated by plasma electrolytic oxidation. Surf Coat Technol. 2021;410:126983. doi: 10.1016/j.surfcoat.2021.126983.
  • Han J, Blawert C, Tang S, et al. Formation and corrosion behaviors of calcium phosphate coatings on plasma electrolytic oxidized Mg under changing chemical environment. Surf Coat Technol. 2021;412:127030. doi: 10.1016/j.surfcoat.2021.127030.
  • Rahmati M, Raeissi K, Toroghinejad MR, et al. The multi-effects of K2TiF6 additive on the properties of PEO coatings on AZ31 Mg alloy. Surf Coat Technol. 2020;402:126296. doi: 10.1016/j.surfcoat.2020.126296.
  • Chen Q, Li W, Ling K, et al. Effect of Na2WO4 addition on formation mechanism and microstructure of micro-arc oxidation coating on Al-Ti double-layer composite plate. Materials & Design. 2020;190:108558. doi: 10.1016/j.matdes.2020.108558.
  • Mori Y, Koshi A, Liao J, et al. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate – silicate mixture electrolytes. Corros Sci. 2014;88:254–262. doi: 10.1016/j.corsci.2014.07.038.
  • Yang C-P, Meng X-Z, Li X-R, et al. Effect of electrolyte composition on corrosion behavior and tribological performance of plasma electrolytic oxidized TC4 alloy. Trans Nonferrous Met Soc China. 2023;33(1):141–156. doi: 10.1016/S1003-6326(22)66096-5.
  • Gao H, Zhang M, Yang X, et al. Effect of Na 2 SiO 3 solution concentration of micro-arc oxidation process on lap-shear strength of adhesive-bonded magnesium alloys. Appl Surf Sci. 2014;314:447–452. doi: 10.1016/j.apsusc.2014.06.117.
  • Yang C, Huang J, Cui S, et al. NaF assisted preparation and the improved corrosion resistance of high content ZnO doped plasma electrolytic oxidation coating on AZ31B alloy. J Magnesium Alloys. 2023;2213-9567. doi: 10.1016/j.jma.2023.02.008.
  • Liu Dan SY-W, DA-Yong SHAN, En HAN, et al. Self-healing coatings for magnesium alloys: a review. Surf Technol. 2016;45(12):28–35.
  • Song J, She J, Chen D, et al. Latest research advances on magnesium and magnesium alloys worldwide. J Magnesium Alloys. 2020;8(1):1–41. doi: 10.1016/j.jma.2020.02.003.
  • Lamaka SV, HöCHE D, Petrauskas RP, et al. A new concept for corrosion inhibition of magnesium: suppression of iron re-deposition. Electrochem Commun. 2016;62:5–8. doi: 10.1016/j.elecom.2015.10.023.
  • Ishizaki T, Masuda Y, Teshima K. Composite film formed on magnesium alloy AZ31 by chemical conversion from molybdate/phosphate/fluorinate aqueous solution toward corrosion protection. Surf Coat Technol. 2013;217:76–83. doi: 10.1016/j.surfcoat.2012.11.076.
  • Chen J, Feng J, Yan L, et al. In situ growth process of Mg–Fe layered double hydroxide conversion film on MgCa alloy. J Magnesium Alloys. 2021;9(3):1019–1027. doi: 10.1016/j.jma.2020.05.019.
  • Chai H, Wang L, Cao X, et al. The effects of chemical conversion parameters on morphology and corrosion performance of calcium phosphate coating on AZ31 alloy. Mater Chem Phys. 2023;296:127338. doi: 10.1016/j.matchemphys.2023.127338.
  • Li W, Tian A, Li T, et al. Ag/ZIF-8/Mg-Al LDH composite coating on MAO pretreated Mg alloy as a multi-ion-release platform to improve corrosion resistance, osteogenic activity, and photothermal antibacterial properties. Surf Coat Technol. 2023;464:129555. doi: 10.1016/j.surfcoat.2023.129555.
  • Zhang A-M, Liu C, Sui P-S, et al. Corrosion resistance and mechanisms of smart micro-arc oxidation/epoxy resin coatings on AZ31 Mg alloy: strategic positioning of nanocontainers. J Magnesium Alloys. 2023;2213-9567. doi: 10.1016/j.jma.2022.12.013.
  • Gong Y, Geng J, Huang J, et al. Self-healing performance and corrosion resistance of novel CeO2-sealed MAO film on aluminum alloy. Surf Coat Technol. 2021;417:127208. doi: 10.1016/j.surfcoat.2021.127208.
  • Cai L, Song X, Liu CB, et al. Corrosion resistance and mechanisms of Nd(NO(3))(3) and polyvinyl alcohol organic-inorganic hybrid material incorporated MAO coatings on AZ31 Mg alloy. J Colloid Interface Sci. 2023;630(Pt A):833–845. doi: 10.1016/j.jcis.2022.10.087.
  • Chen Q, Zheng Y, Dong S, et al. Effects of fluoride ions as electrolyte additives for a PEO/Ni-P composite coating onto Mg alloy AZ31B. Surf Coat Technol. 2021;417:126883. doi: 10.1016/j.surfcoat.2021.126883.
  • Zhou N, Hou L, Wei Y. Inhibition effect of sodium phosphate on the corrosion of AZ31 magnesium alloy in 3.5 wt% NaCl solution. Rare Metal Mater Eng. 2015;44(9):2260–2264.
  • Ur Rehman Z, Koo BH. Effect of Na 2 SiO 3 ·5H 2 O concentration on the microstructure and corrosion properties of two-step PEO coatings formed on AZ91 alloy. Surf Coat Technol. 2017;317:117–124. doi: 10.1016/j.surfcoat.2017.03.046.
  • Hiromoto S. Self-healing property of hydroxyapatite and octacalcium phosphate coatings on pure magnesium and magnesium alloy. Corros Sci. 2015;100:284–294. doi: 10.1016/j.corsci.2015.08.001.
  • Yuan M-R, Lu J-T, Kong G, et al. Self healing ability of silicate conversion coatings on hot dip galvanized steels. Surf Coat Technol. 2011;205(19):4507–4513. doi: 10.1016/j.surfcoat.2011.03.088.
  • Xue X, Liang C, Wang D, et al. The research progress of self-healing coatings for magnesium/magnesium alloy. J Alloys Compd. 2023;960:170710. doi: 10.1016/j.jallcom.2023.170710.
  • Lamaka SV, Zheludkevich ML, Yasakau KA, et al. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Prog Org Coat. 2007;58(2–3):127–135. doi: 10.1016/j.porgcoat.2006.08.029.
  • Toorani M, Aliofkhazraei M, Mahdavian M, et al. Effective PEO/silane pretreatment of epoxy coating applied on AZ31B Mg alloy for corrosion protection. Corros Sci. 2020;169:108608. doi: 10.1016/j.corsci.2020.108608.
  • Sopchenski L, Robert J, Touzin M, et al. Improvement of wear and corrosion protection of PEO on AA2024 via sol-gel sealing. Surf Coat Technol. 2021;417:127195. doi: 10.1016/j.surfcoat.2021.127195.
  • Pezzato L, Rigon M, Martucci A, et al. Plasma electrolytic oxidation (PEO) as pre-treatment for sol-gel coating on aluminum and magnesium alloys. Surf Coat Technol. 2019;366:114–123. doi: 10.1016/j.surfcoat.2019.03.023.
  • Ba Z, Dong Q, Zhang X, et al. Cerium-based modification treatment of Mg-Al hydrotalcite film on AZ91D Mg alloy assisted with alternating electric field. J Alloys Compd. 2017;695:106–113. doi: 10.1016/j.jallcom.2016.10.139.
  • Zhang X, Zhang Y, Lv Y, et al. Enhanced corrosion resistance of AZ31 Mg alloy by one-step formation of PEO/Mg-Al LDH composite coating. Corros Commun. 2022;6:67–83. doi: 10.1016/j.corcom.2022.05.001.
  • Zhang G, Jiang E, Wu L, et al. Corrosion protection properties of different inhibitors containing PEO/LDHs composite coating on magnesium alloy AZ31. Sci Rep. 2021;11(1):2774. doi: 10.1038/s41598-021-81029-6.
  • Shang W, Wu F, Jiang S, et al. Effect of hydrophobicity on the corrosion resistance of microarc oxidation/self-assembly/nickel composite coatings on magnesium alloys. J Mol Liq. 2021;330:115606. doi: 10.1016/j.molliq.2021.115606.
  • Li J, Qiu Y, Yang J, et al. Effect of grain refinement induced by wire and arc additive manufacture (WAAM) on the corrosion behaviors of AZ31 magnesium alloy in NaCl solution. J Magnesium Alloys. 2023;11(1):217–229. doi: 10.1016/j.jma.2021.04.007.
  • Prosek T, Nazarov A, Bexell U, et al. Corrosion mechanism of model zinc–magnesium alloys in atmospheric conditions. Corrosion Science. 2008;50(8):2216–2231. doi: 10.1016/j.corsci.2008.06.008.
  • Thomas S, Medhekar NV, Frankel GS, et al. Corrosion mechanism and hydrogen evolution on Mg. Curr Opin Solid State Mater Sci. 2015;19(2):85–94. doi: 10.1016/j.cossms.2014.09.005.
  • Li Y, Lu F, Li H, et al. Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31 magnesium alloy in simulated body fluid. Prog Nat Sci Mater Int. 2014;24(5):516–522. doi: 10.1016/j.pnsc.2014.08.007.
  • Zheng X, Liu Q, Ma H, et al. Probing local corrosion performance of sol-gel/MAO composite coating on Mg alloy. Surf Coat Technol. 2018;347:286–296. doi: 10.1016/j.surfcoat.2018.05.010.
  • Li J, Bian Y, Tu X, et al. Influence of surface roughness of substrate on corrosion behavior of MAO coated ZM5 Mg alloy. Electroanal Chem. 2022;910:116206. doi: 10.1016/j.jelechem.2022.116206.
  • Gao H, Li Q, Dai Y, et al. High efficiency corrosion inhibitor 8-hydroxyquinoline and its synergistic effect with sodium dodecylbenzenesulphonate on AZ91D magnesium alloy. Corros Sci. 2010;52(5):1603–1609. doi: 10.1016/j.corsci.2010.01.033.
  • Han Z, Chen H, Zhou S. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: a density functional theory study. Appl Surf Sci. 2017;394:371–377. doi: 10.1016/j.apsusc.2016.10.101.
  • Calado LM, Taryba MG, Carmezim MJ, et al. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy. Corros Sci. 2018;142:12–21. doi: 10.1016/j.corsci.2018.06.013.
  • Ma D, Zhao J, Huang Q, et al. Pyrazole acylhydrazone schiff bases as magnesium alloy corrosion inhibitor: synthesis, properties and mechanism investigation. J Mol Struct. 2023;1281:135056. doi: 10.1016/j.molstruc.2023.135056.
  • Lamaka SV, Vaghefinazari B, Mei D, et al. Comprehensive screening of Mg corrosion inhibitors. Corros Sci. 2017;128:224–240. doi: 10.1016/j.corsci.2017.07.011.
  • Li CY, Gao L, Fan XL, et al. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31. Bioact Mater. 2020;5(2):364–376. doi: 10.1016/j.bioactmat.2020.02.008.
  • Chen Y, Wu L, Yao W, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating. Corros Sci. 2022;194:109941. doi: 10.1016/j.corsci.2021.109941.
  • Chen Y, Lu X, Lamaka SV, et al. Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors. Appl Surf Sci. 2020;504:144462. doi: 10.1016/j.apsusc.2019.144462.
  • Yang J, Blawert C, Lamaka SV, et al. Corrosion protection properties of inhibitor containing hybrid PEO-epoxy coating on magnesium. Corrosion Science. 2018;140:99–110. doi: 10.1016/j.corsci.2018.06.014.
  • Wierzbicka E, Vaghefinazari B, Lamaka SV, et al. Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy. Corros Sci. 2021;180:109189. doi: 10.1016/j.corsci.2020.109189.
  • Vaghefinazari B, Lamaka SV, Blawert C, et al. Exploring the corrosion inhibition mechanism of 8-hydroxyquinoline for a PEO-coated magnesium alloy. Corros Sci. 2022;203:110344. doi: 10.1016/j.corsci.2022.110344.
  • Lei L, Xin-Fang Z, Jing-Lei L, et al. Self-cleaning and self-healing protective coating on magnesium alloy. Surface Technology. 2019;3:7.
  • Chen Q, Lu X, Serdechnova M, et al. Formation of self-healing PEO coatings on AM50 Mg by in-situ incorporation of zeolite micro-container. Corros Sci. 2022;209:110785. doi: 10.1016/j.corsci.2022.110785.
  • Liu D, Song Y, Shan D, et al. Self-Healing coatings prepared by loading interphase inhibitors into MAO coating of AM60 Mg alloy. J. Electrochem. Soc. 2018;165(7):C412–C421. doi: 10.1149/2.0011809jes.
  • Zhang D, Peng F, Qiu J, et al. Regulating corrosion reactions to enhance the anti-corrosion and self-healing abilities of PEO coating on magnesium. Corros Sci. 2021;192:109840. doi: 10.1016/j.corsci.2021.109840.
  • Mohedano M, PéREZ P, Matykina E, et al. PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy. Surf Coat Technol. 2020;383:125253. doi: 10.1016/j.surfcoat.2019.125253.
  • Zhang G, Jiang E, Wu L, et al. Active corrosion protection of phosphate loaded PEO/LDHs composite coatings: SIET study. J Magnesium Alloys. 2022;10(5):1351–1357. doi: 10.1016/j.jma.2021.03.008.
  • Zhang G, Wu L, Tang A, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31. Corros Sci. 2018;139:370–382. doi: 10.1016/j.corsci.2018.05.010.
  • Yang S, Sun R, Chen K. Self-healing performance and corrosion resistance of phytic acid/cerium composite coating on microarc-oxidized magnesium alloy. Chem Eng J. 2022;428:131198. doi: 10.1016/j.cej.2021.131198.
  • Mohedano M, Lu X, Matykina E, et al. Plasma electrolytic oxidation (PEO) of metals and alloys [M]//WANDELT K. In Encyclopedia of interfacial chemistry. Oxford: Elsevier; 2018. p. 423–438.
  • Huang J, Zhao D, Gong Y, et al. Improved corrosion resistance of PEO-coated 7085Al alloy via a novel organic and inorganic sealing-treatment combination. Surf Coat Technol. 2022;441:128566. doi: 10.1016/j.surfcoat.2022.128566.
  • Liu G, Lu X, Zhang X, et al. Improvement of corrosion resistance of PEO coatings on Al alloy by formation of ZnAl layered double hydroxide. Surf Coat Technol. 2022;441:128528. doi: 10.1016/j.surfcoat.2022.128528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.