73
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Corrosion resistance studies of copper and magnesium-doped fluorohydroxyapatite coatings on titanium biomaterial

, , , , , & show all
Pages 1101-1123 | Received 11 Jan 2023, Accepted 21 Aug 2023, Published online: 07 Sep 2023

References

  • Thanh DTM, Nam PT, Phuong NT, et al. Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Mater Sci Eng C Mater Biol Appl. 2013;33(4):2037–2045. doi: 10.1016/j.msec.2013.01.018.
  • Gopi D, Ramya S, Rajeswari D, et al. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells. Colloids Surf B Biointerfaces. 2014;114:234–240. doi: 10.1016/j.colsurfb.2013.10.011.
  • Rehman M, Wang Y, Ishfaq K, et al. Potential assessment in laser powder bed fusion of bionic porous Ti scaffolds concerning compressive behavior, porosity, and surface roughness. J Manuf Process. 2023;95:461–478. doi: 10.1016/j.jmapro.2023.04.030.
  • Rehman M, Wang Y, Ishfaq K, et al. Manufacturability study in laser powder bed fusion of biomedical Ti alloys for orthopedic implants: an investigation of mechanical properties, process-induced porosity and surface roughness. RPJ. 2023;29(6):1299–1323. doi: 10.1108/RPJ-02-2022-0042.
  • Ishfaq K, Rehman M, Khan AR, et al. A review on the performance characteristics, applications, challenges and possible solutions in electron beam melted Ti-based orthopaedic and orthodontic implants. RPJ. 2022;28(3):525–545. doi: 10.1108/RPJ-03-2021-0060.
  • Rehman M, Yanen W, Mushtaq RT, et al. Additive manufacturing for biomedical applications: a review on classification, energy consumption, and its appreciable role since COVID-19 pandemic. Prog Addit Manuf. 2022. doi: 10.1007/s40964-022-00373-9.
  • Huang Y, Zhang X, Qiao H, et al. Corrosion resistance and cytocompatibility studies of zinc-doped fluorohydroxyapatite nanocomposite coatings on titanium implant. Ceram Int. 2016;42(1):1903–1915. doi: 10.1016/j.ceramint.2015.09.160.
  • Sharifnabi A, Fathi MH, Eftekhari Yekta B, et al. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant. Appl Surf Sci. 2014;288:331–340. doi: 10.1016/j.apsusc.2013.10.029.
  • Özcan M, Hämmerle C. Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. Materials. 2012;5(9):1528–1545. doi: 10.3390/ma5091528.
  • Yajing Y, Qiongqiong D, Yong H, et al. Magnesium substituted hydroxyapatite coating on titanium with nanotublar TiO2 intermediate layer via electrochemical deposition. Appl Surf Sci. 2014;305:77–85. doi: 10.1016/j.apsusc.2014.02.163.
  • Anene FA, Jaafar CNA, Mohamed Ariff AH, et al. Biomechanical properties and corrosion resistance of Plasma-Sprayed fish scale hydroxyapatite (FsHA) and FsHA-Doped Yttria-Stabilized zirconia coatings on Ti–6Al–4V alloy for biomedical applications. Coatings. 2023;13(1):199. doi: 10.3390/coatings13010199.
  • Szesz EM, de Souza GB, de Lima GG, et al. Improved tribo-mechanical behavior of CaP-containing TiO2 layers produced on titanium by shot blasting and micro-arc oxidation. J Mater Sci Mater Med. 2014;25(10):2265–2275. doi: 10.1007/s10856-014-5238-9.
  • Vasilescu C, Drob P, Vasilescu E, et al. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corros Sci. 2011;53(3):992–999. doi: 10.1016/j.corsci.2010.11.033.
  • Furko M, Jiang Y, Wilkins T, et al. Development and characterization of silver and zinc doped bioceramic layer on metallic implant materials for orthopedic application. Ceram Int. 2016;42(4):4924–4931. doi: 10.1016/j.ceramint.2015.12.006.
  • Azem FA, Kiss A, Birlik I, et al. The corrosion and bioactivity behavior of SiC doped hydroxyapatite for dental applications. Ceram Int. 2014;40(10):15881–15887. doi: 10.1016/j.ceramint.2014.07.116.
  • Yan Y, Zhang X, Huang Y, et al. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO 2 nanotube composite coatings on titanium. Appl Surf Sci. 2014;314:348–357. doi: 10.1016/j.apsusc.2014.07.027.
  • Kim ES, Jeong YH, Choe HC, et al. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method. Thin Solid Films. 2014;572:99–104. doi: 10.1016/j.tsf.2014.09.020.
  • Bir F, Khireddine H, Touati A, et al. Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag + on stainless steel substrates. Appl Surf Sci. 2012;258(18):7021–7030. doi: 10.1016/j.apsusc.2012.03.158.
  • Wang J, Chao Y, Wan Q, et al. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater. 2009;5(5):1798–1807. doi: 10.1016/j.actbio.2009.01.005.
  • Mohajernia S, Hejazi S, Eslami A, et al. Modified nanostructured hydroxyapatite coating to control the degradation of magnesium alloy AZ31 in simulated body fluid. Surf Coat Technol. 2015;263:54–60. doi: 10.1016/j.surfcoat.2014.12.059.
  • Huang Y, Yan Y, Pang X. Electrolytic deposition of fluorine-doped hydroxyapatite/ZrO2 films on titanium for biomedical applications. Ceram Int. 2013;39(1):245–253. doi: 10.1016/j.ceramint.2012.06.017.
  • Bakhsheshi-Rad HR, Hamzah E, Daroonparvar M, et al. In-vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite. Trans Nonferrous Met Soc China. 2014;24(8):2516–2528. doi: 10.1016/S1003-6326(14)63378-1.
  • Kizuki T, Matsushita T, Kokubo T. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys. J Mater Sci Mater Med. 2014;25(7):1737–1746. doi: 10.1007/s10856-014-5201-9.
  • Alagarsamy K, Vishwakarma V, Kaliaraj GS, et al. Biological adhesion and electrochemical behavior of Ag-ZrO 2 bioceramic coatings for biomedical applications. J Adhes Sci Technol. 2020;34(4):349–368. doi: 10.1080/01694243.2019.1666627.
  • Azami M, Jalilifiroozinezhad S, Mozafari M, et al. Synthesis and solubility of calcium fluoride/hydroxy-fluorapatite nanocrystals for dental applications. Ceram Int. 2011;37(6):2007–2014. doi: 10.1016/j.ceramint.2011.02.025.
  • Batebi K, Abbasi Khazaei B, Afshar A. Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate. Surf Coat Technol. 2018;352:522–528. doi: 10.1016/j.surfcoat.2018.08.021.
  • Pierre AC. Applications of Sol-Gel processing. In Introduction to Sol-Gel processing [Internet]. Cham: Springer International Publishing; 2020. p. 597–685.
  • Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: a review paper. Int J Adhes Adhes. 2014;48:238–257. doi: 10.1016/j.ijadhadh.2013.09.030.
  • Marashi-Najafi F, Khalil-Allafi J, Etminanfar MR, et al. Corrosion resistance and in vitro evaluation of the pulsed current electrodeposited hydroxyapatite coatings on nitinol shape memory alloy. Mater Corros. 2017;68(11):1237–1245. doi: 10.1002/maco.201709702.
  • Bell B, Scholvin D, Jin C, et al. Pulsed laser deposition of hydroxyapatite-diamondlike carbon multilayer films and their adhesion aspects. J Adhes Sci Technol. 2006;20(2–3):221–231. doi: 10.1163/156856106775897748.
  • Abdel-Hamid Z, Rashad MM, Mahmoud SM, et al. Electrochemical hydroxyapatite-cobalt ferrite nanocomposite coatings as well hyperthermia treatment of cancer. Mater Sci Eng C Mater Biol Appl. 2017;76:827–838. doi: 10.1016/j.msec.2017.03.126.
  • Romonti DC, Anghel G, Voicu G. Selecting super hydrophilic phosphate masses coatings electrodeposited on titanium for medical applications. In 2014 international semiconductor conference (CAS). 2014. p. 113–116. doi: 10.1109/SMICND.2014.6966408.
  • Cai Y, Zhang S, Zeng X, et al. Improvement of bioactivity with magnesium and fluorine ions incorporated hydroxyapatite coatings via sol–gel deposition on Ti6Al4V alloys. Thin Solid Films. 2009;517(17):5347–5351. doi: 10.1016/j.tsf.2009.03.071.
  • Cao J, Lian R, Jiang X. Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility. Appl Surf Sci. 2020;515:146069. doi: 10.1016/j.apsusc.2020.146069.
  • Totea G, Ionita D, Demetrescu I. Influence of doping ions on the antibacterial activity of biomimetic coating on CoCrMo alloy. J Bionic Eng. 2015;12(4):583–591. doi: 10.1016/S1672-6529(14)60148-7.
  • Standard Practice for Preparing (PDF). Cleaning, and evaluating corrosion test specimens 1 | Fasmid Oil - Academia.edu [Internet] [cited 2023 Apr 30]. Available from: https://www.academia.edu/32647885/Standard_Practice_for_Preparing_Cleaning_and_Evaluating_Corrosion_Test_Specimens_1
  • Huang Y, Han S, Pang X, et al. Electrodeposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl Surf Sci. 2013;271:299–302. doi: 10.1016/j.apsusc.2013.01.187.
  • Hu Z, Ma F, Shen L, et al. Superior anti-corrosion performance on Cu substrate achieved by dense polypropylene coating with ultrahigh inhibition efficiency deposited via the environmental-friendly method. Corros Sci. 2021;191:109783. doi: 10.1016/j.corsci.2021.109783.
  • Nasiri-Tabrizi B. Thermal treatment effect on structural features of mechano-synthesized fluorapatite-titania nanocomposite: a comparative study. J Adv Ceram. 2014;3(1):31–42. doi: 10.1007/s40145-014-0090-4.
  • Roy M, Bandyopadhyay A, Bose S. Induction plasma sprayed Sr and Mg doped nano hydroxyapatite coatings on Ti for bone implant. J Biomed Mater Res B Appl Biomater. 2011;99(2):258–265. doi: 10.1002/jbm.b.31893.
  • El Mhammedi MA, Achak M, Bakasse M, et al. Physico-chemical characterization of electrochemical deposit of Ca10(PO4)6(OH)2 on copper surfaces. Appl Surf Sci. 2007;253(14):5925–5930. doi: 10.1016/j.apsusc.2007.01.085.
  • Nikčević I, Jokanović V, Mitrić M, et al. Mechanochemical synthesis of nanostructured fluorapatite/fluorhydroxyapatite and carbonated fluorapatite/fluorhydroxyapatite. J Solid State Chem. 2004;177(7):2565–2574. doi: 10.1016/j.jssc.2004.03.024.
  • Romonţi DC, Iskra J, Bele M, et al. Elaboration and characterization of fluorohydroxyapatite and fluoroapatite sol − gel coatings on CoCrMo alloy. J Alloys Compd. 2016;665:355–364. doi: 10.1016/j.jallcom.2016.01.072.
  • Qiao H, Zou Q, Yuan C, et al. Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation. Ceram Int. 2018;44(14):16632–16646. doi: 10.1016/j.ceramint.2018.06.090.
  • Ciobanu G, Harja M. Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram Int. 2019;45(2):2852–2857. doi: 10.1016/j.ceramint.2018.07.290.
  • Yu W, Sun R, Guo Z, et al. Novel fluoridated hydroxyapatite/MAO composite coating on AZ31B magnesium alloy for biomedical application. Appl Surf Sci. 2019;464:708–715. doi: 10.1016/j.apsusc.2018.09.148.
  • Landi E, Tampieri A, Mattioli-Belmonte M, et al. Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. J Eur Ceram Soc. 2006;26(13):2593–2601. doi: 10.1016/j.jeurceramsoc.2005.06.040.
  • Liu C, Tian A, Yang H, et al. Electrodeposited hydroxyapatite coatings on the TiO2 nanotube in static magnetic field. Appl Surf Sci. 2013;287:218–222. doi: 10.1016/j.apsusc.2013.09.131.
  • Sanyal V, Raja CR. Synthesis, characterization and in-vitro studies of strontium-zinc co-substituted fluorohydroxyapatite for biomedical applications. J Non-Cryst Solids. 2016;445–446:81–87. doi: 10.1016/j.jnoncrysol.2016.05.010.
  • Vyas V, Kaur T, Kar S, et al. Biofunctionalization of commercially pure titanium with chitosan/hydroxyapatite biocomposite via silanization: evaluation of biological performances. J Adhes Sci Technol. 2017;31(16):1768–1781. doi: 10.1080/01694243.2016.1278070.
  • Sivaraj D, Vijayalakshmi K, Ganeshkumar A, et al. Tailoring Cu substituted hydroxyapatite/functionalized multiwalled carbon nanotube composite coating on 316L SS implant for enhanced corrosion resistance, antibacterial and bioactive properties. Int J Pharm. 2020;590:119946. doi: 10.1016/j.ijpharm.2020.119946.
  • Witek L, Shi Y, Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: an in vitro study. J Adv Ceram. 2017;6(2):157–164. doi: 10.1007/s40145-017-0228-2.
  • Yang Y, Zhang C, Peng Y, et al. Effects of crystallization on the corrosion resistance of Fe-based amorphous coatings. Corros Sci. 2012;59:10–19. doi: 10.1016/j.corsci.2012.02.003.
  • Pruncu CI, Braic M, Dearn KD, et al. Corrosion and tribological performance of quasi-stoichiometric titanium containing carbo-nitride coatings. Arab J Chem. 2017;10(7):1015–1028. doi: 10.1016/j.arabjc.2016.09.009.
  • Liao X, Cao F, Zheng L, et al. Corrosion behaviour of copper under chloride-containing thin electrolyte layer. Corros Sci. 2011;53(10):3289–3298. doi: 10.1016/j.corsci.2011.06.004.
  • Chozhanathmisra M, Ramya S, Kavitha L, et al. Development of zinc-halloysite nanotube/minerals substituted hydroxyapatite bilayer coatings on titanium alloy for orthopedic applications. Colloids Surf Physicochem Eng Asp. 2016;511:357–365. doi: 10.1016/j.colsurfa.2016.10.018.
  • Anandan C, Mohan L. In vitro corrosion behavior and apatite growth of oxygen plasma ion implanted titanium alloy β-21S. J of Materi Eng and Perform. 2013;22(11):3507–3516. doi: 10.1007/s11665-013-0628-6.
  • Talha M, Wang Q, Xu M, et al. Improved corrosion protective performance of hybrid silane coatings reinforced with nano ZnO on 316 L stainless steel. Colloid Interface Sci Commun. 2021;42:100411. doi: 10.1016/j.colcom.2021.100411.
  • Mekhiche L, Maouche N, Nessark B, et al. Composites of polyanine/CdTe for corrosion protection of mild steel XC 70 in a 3.5% NaCl solution. J Adhes Sci Technol. 2021;35(23):2602–2624. doi: 10.1080/01694243.2021.1899508.
  • Rugmini Ammal P, Prajila M, Joseph A. Effective inhibition of mild steel corrosion in hydrochloric acid using EBIMOT, a 1, 3, 4-oxadiazole derivative bearing a 2-ethylbenzimidazole moiety: electro analytical, computational and kinetic studies. Egypt J Pet. 2018;27(4):823–833. doi: 10.1016/j.ejpe.2017.12.004.
  • Jiang Y, Zhu L, Cai S, et al. Corrosion-resistant fluoridated Ca–Mg–P composite coating on magnesium alloys prepared via hydrothermal assisted sol–gel process. J Mater Res. 2018;33(22):3793–3800. doi: 10.1557/jmr.2018.270.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.