85
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of process parameter of friction stir processing of AA2024-T351 Alloy using RSM and GRA

ORCID Icon & ORCID Icon
Pages 1675-1701 | Received 12 May 2023, Accepted 07 Oct 2023, Published online: 02 Nov 2023

References

  • Harwani D, Badheka V, Patel V. High-temperature tensile deformation in single-pass friction stirred AZ31 alloy. Int J Lightweight Mater Manuf. 2023;6(1):140–148. doi: 10.1016/j.ijlmm.2022.09.003.
  • Kumar N, Gupta P, Singh RK. Fabrication of Al 6082/SiC composite using friction stir processing. J Inst Eng (India): Ser D. 2022;1–6.
  • Mystica A, Kumar SV, Padmanabhan KA. On the friction stir welding of alloy AA2014 under n-MQL cooling condition. J AdhesSci Technol. 2022;37(13), 2025–2045.
  • Ammal MA, Sudha J. Microstructural evolution & mechanical properties of ZrO2/GNP and B4C/GNP reinforced AA6061 friction stir processed surface Composites - A comparative study. Proc Inst Mech Eng B J Eng Manuf. 2023;237(8):1149–1160. doi: 10.1177/09544054221126942.
  • Siddesh Kumar NM, Pramod GK, Samrat P, et al. A critical review on heat treatment of aluminium alloys. Mater Today Proc. 2022;58:71–79 doi: 10.1016/j.matpr.2021.12.586.
  • Wang SC, Starink MJ. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev. 2005;50(4):193–215. doi: 10.1179/174328005X14357.
  • Bagheri B, Abdollahzadeh A, Abbasi M, et al. Effect of vibration on machining and mechanical properties of AZ91 alloy during FSP: modeling and experiments. Int J Mater Form. 2021;14(4):623–640. doi: 10.1007/s12289-020-01551-2.
  • Elkhodary KI, Salem HG, Zikry MA. Equal channel angular pressing of canned 2124-Al compacts: processing, experiments, and modelling. Metall Mater Trans A. 2008;39(9):2184–2192. doi: 10.1007/s11661-008-9541-2.
  • Barcellona A, Fratini L, Palmeri D, et al. Friction stir processing of niti shape memory alloy: microstructural characterization. Int J Mater Form. 2010;3(S1):1047–1050. doi: 10.1007/s12289-010-0950-6.
  • Vasava A, Singh D. Effect of different volume ratios of SiC and TiO2 reinforcement particles on Mono and hybrid surface composites of AA7075-T651 through friction stir processing. J Adhes Sci Technol. 2023;1–20. doi: 10.1080/01694243.2023.2197681.
  • Ananda Kumar CJ, Kumar S, Mohan DG, et al. Predicting the ultimate tensile strength and wear rate of aluminium hybrid surface composites fabricated via friction stir processing using computational methods. J Adhes Sci Technol. 2022;36(16):1707–1726. doi: 10.1080/01694243.2021.1982237.
  • Anandha Kumar CJ, Gopi S, Shashi Kumar S, et al. Mechanical, metallurgical and tribological properties of friction stir processed aluminium alloy 6061 hybrid surface composites. Surf Topogr Metrol Prop. 2021;9(4):045019. doi: 10.1088/2051-672X/ac3120.
  • Butola R, Pandit D, Pratap C, et al. Two decades of friction stir processing–a review of advancements in composite fabrication. J Adhes Sci Technol. 2022;36(8):795–832. doi: 10.1080/01694243.2021.1938835.
  • Prabhu MS, Perumal AE, Arulvel S, et al. Friction and wear measurements of friction stir processed aluminum alloy 6082/CaCO3 composite. Measure. 2019;142:10–20. doi: 10.1016/j.measurement.2019.04.061.
  • Regev M, Spigarelli S. Microstructure, thermal stability during creep and fractography study of Friction-Stir-Processed AA2024-T3 aluminum alloy. J Mater Eng Perform. 2020;29(8):4872–4878. doi: 10.1007/s11665-020-04696-y.
  • Suri A, Sahai A, Raj KH, et al. Impact and tensile testing of Al2024 alloy processed by friction stir processing. Procedia Eng. 2017;173:679–685. doi: 10.1016/j.proeng.2016.12.145.
  • Zhang X, Zhou X, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: transition from intergranular corrosion to crystallographic pitting. Mater Charact. 2017;130:230–236. doi: 10.1016/j.matchar.2017.06.022.
  • Nadammal N, Kailas SV, Suwas S. A bottom-up approach for optimization of friction stir processing parameters; a study on Aluminum2024-T3 alloy. Mater Des. 2015;65:127–138. doi: 10.1016/j.matdes.2014.09.005.
  • Charit I, Mishra RS. High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater Sci Eng A. 2003;359(1–2):290–296. doi: 10.1016/S0921-5093(03)00367-8.
  • Ikumapayi OM, Akinlabi ET. Experimental data on surface roughness and force feedback analysis in friction stir processed AA7075–T651 aluminum metal composites. Data Br. 2019;23:103710. doi: 10.1016/j.dib.2019.103710.
  • Abed AN, Sadiq GS. Investigation the mechanical properties of 2024AA of friction stir processing. J Phys Conf Ser. 2021;1973(1):012045. doi: 10.1088/1742-6596/1973/1/012045.
  • Regev M, Spigarelli S. Study of mechanical, microstructural and thermal stability properties of friction stir processed aluminium 2024-T3 alloy. Km. 2020;57(04):229–236. doi: 10.4149/km_2019_4_229.
  • Manickam A, Kuppusamy R, Jayaprakasham S, et al. Multi response optimization of friction stir process parameters on AA2024/SiC composite fabricated using friction stir processing. In ASME IMECE (Vol. 85574, p. V003T03A020). https://doi.org/10.1115/IMECE2021-68010.
  • Sarvaiya J, Singh D. Experimental investigation of peak temperature and microhardness in friction stir processing of AA6082-T6 using taguchi GRA. Def Sci J. 2022;72(2):258–267.
  • El-Zathry NE, Hassan AI, El-Betar AA, et al. Optimization of friction stir welding AA6082-T6 parameters using analysis of variance and grey relational analysis. J Phys Conf Ser. 2022;2299(1):012015. doi: 10.1088/1742-6596/2299/1/012015.
  • Zoalfakar SH, Mohamed MA, Abdel Hamid M, et al. Effect of friction stir processing parameters on producing AA6061/tungsten carbide nanocomposite. Proc Inst Mech Eng E J Process Mech Eng. 2022;236(2):653–667.
  • Gunasekaran J, Sevvel P, Roy JV, et al. Analysis of sensitivity and formulation of the empirical relationship between parameters of FSW process and tensile strength of AZ80A Mg alloy joints. Mater Res Express. 2023;10(5):056513. doi: 10.1088/2053-1591/acd98f.
  • Rajakumar S, Balasubramanian V. Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des. 2012;40:17–35. doi: 10.1016/j.matdes.2012.02.054.
  • Ferreira SC, Bruns RE, Ferreira HS, et al. Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta. 2007;597(2):179–186. doi: 10.1016/j.aca.2007.07.011.
  • Srinivasan C, Karunanithi M. Fabrication of surface level Cu/SiCp nanocomposites by friction stir processing route. J Nanotechnol. 2015;2015:1–10. doi: 10.1155/2015/612617.
  • Charandabi FK, Jafarian HR, Mahdavi S, et al. Modification of microstructure, hardness, and wear characteristics of an automotive-grade Al-Si alloy after friction stir processing. J Adhes Sci Technol. 2021;35(23):2696–2709. doi: 10.1080/01694243.2021.1898858.
  • Jain S, Mishra RS, Mehdi H, et al. Optimization of processing variables of friction stir welded dissimilar composite joints of AA6061 and AA7075 using response surface methodology. J Adhes Sci Technol. 2023;1–20. doi: 10.1080/01694243.2023.2243682.
  • Chanakyan C, Sivasankar S. Parametric advancement of the numerical model to predict the mechanical properties of friction stir processed AA5052. Int J Rapid Manufact. 2019;8(1–2):147–160. doi: 10.1504/IJRAPIDM.2019.10017667.
  • John J, Shanmughanatan SP, Kiran MB. Effect of tool geometry on microstructure and mechanical properties of friction stir processed AA2024-T351 aluminium alloy. Mater Today Proc. 2018;5(1):2965–2979. doi: 10.1016/j.matpr.2018.01.095.
  • Acuna R, Cristobal MJ, Abreu CM, et al. Microstructure and wear properties of surface composite layer produced by friction stir processing (FSP) in AA2024-T351 aluminum alloy. Metall Mater Trans A. 2019;50(6):2860–2874. doi: 10.1007/s11661-019-05172-6.
  • Mystica A, Senthil Kumar VS, Sakthi Abirami B. Analysis and prediction of uncertain responses using regression and fuzzy logic for friction stir welding of AA2014 under n-MQL. J Intelligent Fuzzy Syst. 2022;43(3):2375–2390. doi: 10.3233/JIFS-213032.
  • Masoumi Khalilabad M, Zedan Y, Texier D, et al. Effect of heat treatments on microstructural and mechanical characteristics of dissimilar friction stir welded 2198/2024 aluminium alloys. J Adhes Sci Technol. 2022;36(3):221–239. doi: 10.1080/01694243.2021.1917868.
  • Barreto JC, Tita DL, Orlandi MO. Development of an automated method to perform a quantitative study of particle size distribution and the effect of a conductive layer in scanning electron microscopy. Quim Nova. 2019;42:447–452.
  • Horvath R, Dregelyi-Kiss A. Analysis of surface roughness parameters in aluminum fine turning with diamond tool. Measure. Proceedings of the 9th International Conference, Smolenice, Slovakia 2013;275–278.
  • Dawood HI, Mohammed KS, Rahmat A, et al. The influence of the surface roughness on the microstructures and mechanical properties of 6061 aluminium alloy using friction stir welding. Surf Coat Technol. 2015;270:272–283. doi: 10.1016/j.surfcoat.2015.02.045.
  • Yazdanmehr A, Jahed H. On the surface residual stress measurement in magnesium alloys using X-ray diffraction. Materials. 2020;13(22):5190. doi: 10.3390/ma13225190.
  • Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Prog Mater Sci. 2021;117:100752. doi: 10.1016/j.pmatsci.2020.100752.
  • Girish G. Effect of tool pin geometry and multi-pass intermittent friction stir processing on the surface properties of aerospace grade aluminium 7075 alloys. Proc Inst Mech Eng E J Process Mech Eng. 2023;0(0).;095440892311589. doi: 10.1177/09544089231158948.
  • Ahmed MM, El-Sayed Seleman MM, Zidan ZA, et al. Microstructure and mechanical properties of dissimilar friction stir welded AA2024-T4/AA7075-T6 T-butt joints. Metals. 2021;11(1):128. doi: 10.3390/met11010128.
  • Mahdy AA, Mourad A, Mosa ES, et al. Influences of pin profile and transverse speed on microstructure, mechanical properties, and wear behavior of nanocomposite AA6082/WC and fabricated via friction stir processing. J Radiat Res Appl Sci. 2021;14(1):456–466. doi: 10.1080/16878507.2021.2004720.
  • Zhang P, Li SX, Zhang ZF. General relationship between strength and hardness. Mater Sci Eng A. 2011;529:62–73. doi: 10.1016/j.msea.2011.08.061.
  • ASM. Fractography [M]. Geauga County (OH): ASM International; 1987.
  • Van der V, George F. Visual examination and light microscopy [M] Fractography. Geauga County (OH): ASM International; 1987. p. 91–165.
  • You J, Zhao Y, Dong C, et al. Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-T6 aluminium alloy at high rotation speeds. Int J Adv Manuf Technol. 2020;108(4):987–996. doi: 10.1007/s00170-019-04594-1.
  • Moustafa E. Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites. Materials. 2017;10(9):1053. doi: 10.3390/ma10091053.
  • Liew KW, Chung YZ, Teo GS, et al. Effect of tool pin geometry on the microhardness and surface roughness of friction stir processed recycled AA 6063. Metals. 2021;11(11):1695. doi: 10.3390/met11111695.
  • Zhou Y, Xiong H, Zhang Y, et al. Microstructure and mechanical properties of ultrafine-grained AA2024 sheets joined by underwater friction stir welding. Mater Charact. 2023;198:112749. doi: 10.1016/j.matchar.2023.112749.
  • Vijaykumar BT, Bharati B, Priyanka K, et al. Investigations on dislocation density and strain of polyaniline with WO3 nanocomposites. IOP Conf Ser Mater Sci Eng. 2022;1221(1):012017. doi: 10.1088/1757-899X/1221/1/012017.
  • García-Hernández JL, Garay-Reyes CG, Gómez-Barraza IK, et al. Influence of plastic deformation and Cu/Mg ratio on the strengthening mechanisms and precipitation behavior of AA2024 aluminum alloys. J Mater Res Technol. 2019;8(6):5471–5475. doi: 10.1016/j.jmrt.2019.09.015.
  • Al‐Tabbakh AA, Karatepe N, Al‐Zubaidi AB, et al. Crystallite size and lattice strain of lithiated spinel material for rechargeable battery by X‐ray diffraction peak‐broadening analysis. Int J Energy Res. 2019;43(5):1903–1911. doi: 10.1002/er.4390.
  • Shao Z, Zhang C, Li Y, et al. A review of Non-Destructive evaluation (NDE) techniques for residual stress profiling of metallic components in aircraft engines. Aerospace. 2022;9(10):534. doi: 10.3390/aerospace9100534.
  • Panneerselvam R. Design and analysis of experiments [M]. Delhi, India: PHI Learning Private Limited; 2012. ISBN-978-81-203-4499-0.
  • Lakshminarayanan AK. Enhancing the properties of friction stir welded stainless steel joints via multi-criteria optimization. Arch Civ Mech Eng. 2016;16(4):605–617. doi: 10.1016/j.acme.2016.03.012.
  • Kundu J, Singh H. Friction stir welding: multi-response optimisation using taguchi-based GRA. Prod Manuf Res. 2016;4(1):228–241. doi: 10.1080/21693277.2016.1266449.
  • F Sakr M, M Afify R, M. Gaafer A, et al. Statistical analysis of friction stir welding parameters. J Eng Res Faculty Eng (Shoubra). 2021;48(1):1–7. doi: 10.21608/erjsh.2021.227585.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A. 2015;642:204–214. doi: 10.1016/j.msea.2015.07.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.