83
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Investigation of capillary forces and capillary bridges between an end-adjusted three-finger microgripper with hydrophobic side surface and a plate

, , , , &
Pages 1702-1717 | Received 15 Apr 2023, Accepted 07 Oct 2023, Published online: 18 Oct 2023

References

  • Wu W, Bi L, Du K, Zhang J, Yang H, Wang H. A new spatial angle assembly method of the ICF target. High Power Laser Sci Eng. 2017;5:e9.
  • Chung SK, Kwon JO, Cho SK. Manipulation of micro/mini-objects by AC-electrowetting-actuated oscillating bubbles: capturing, carrying and releasing. J Adhes Sci Technol. 2012;26(12-17):1965–1983. doi: 10.1163/156856111X600550.
  • Somà A, Iamoni S, Voicu R, Müller R, Al-Zandi MH, Wang C. Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsyst Technol. 2018;24:1053–1060. doi: 10.1007/s00542-017-3460-3.
  • Velosa-Moncada LA, Aguilera-Cortés LA, González-Palacios MA, Raskin JP, Herrera-May AL. Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications. Sensors. 2018;18(5):1664. doi: 10.3390/s18051664.
  • Das TK, Shirinzadeh B, Ghafarian M, Al-Jodah A. Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper. Smart Mater Struct. 2020;29(4):045028. doi: 10.1088/1361-665X/ab79b6.
  • Rong W, Fan Z, Wang L, Xie H, Sun L. A vacuum microgripping tool with integrated vibration releasing capability. Rev Sci Instrum. 2014;85(8):085002.
  • Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, Nguyen TD, Gracias DH. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater. 2015;7(5):3398–3405. doi: 10.1021/am508621s.
  • Lu Y, Xie Z, Wang J, Yue H, Wu M, Liu Y. A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator. Int J Mech Sci. 2019;159:74–80. doi: 10.1016/j.ijmecsci.2019.05.041.
  • Walker R, Gralinski I, Keong Lay K, Alan T, Neild A. Particle manipulation using an ultrasonic micro-gripper. Appl Phys Lett. 2012;101(16):163504.
  • Saito S, Motokado T, Obata KJ, Takahashi K. Capillary force with a concave probe-tip for micromanipulation. Appl Phys Lett. 2005;87(23):234103.
  • Vasudev A, Zhe J. A capillary microgripper based on electrowetting. Appl Phys Lett. 2008;93(10):103503.
  • Vasudev A, Jagtiani A, Du L, Zhe J. A low-voltage droplet microgripper for micro-object manipulation. J Micromech Microeng. 2009;19(7):075005. doi: 10.1088/0960-1317/19/7/075005.
  • Al Amin A, Jagtiani A, Vasudev A, Hu J, Zhe J. Soft microgripping using ionic liquids for high temperature and vacuum applications. J Micromech Microeng. 2011;21(12):125025. doi: 10.1088/0960-1317/21/12/125025.
  • Fantoni G, Hansen HN, Santochi M. A new capillary gripper for mini and micro parts. CIRP Annals. 2013;62(1):17–20. doi: 10.1016/j.cirp.2013.03.005.
  • Fan Z, Wang L, Rong W, Sun L. Dropwise condensation on a hydrophobic probe-tip for manipulating micro-objects. Appl Phys Lett. 2015;106(8):084105.
  • Fan Z, Rong W, Wang L, Sun L. A single-probe capillary microgripper induced by dropwise condensation and inertial release. J Micromech Microeng. 2015;25(11):115011. doi: 10.1088/0960-1317/25/11/115011.
  • Zhang Q, Wang H, Gan Y, Huang W, Aoyama H. Method of orientation control and experimental investigation using a liquid-drop micromanipulator. J Micromech Microeng. 2017;27(4):045006. doi: 10.1088/1361-6439/aa5e65.
  • Giltinan J, Diller E, Sitti M. Programmable assembly of heterogeneous microparts by an untethered mobile capillary microgripper. Lab on Chip. 2016;16(22):4445–4457. doi: 10.1039/c6lc00981f.
  • Iazzolino A, Tourtit Y, Chafaï A, Gilet T, Lambert P, Tadrist L. Pick up and release of micro-objects: A motion-free method to change the conformity of a capillary contact. Soft Matter. 2020;16(3):754–763. doi: 10.1039/c9sm02093d.
  • Chafaï A, Ibrahimi A, Lambert P. A volume-tuning capillary gripper that enhances handling capabilities and enables testing of micro-components. Micromachines. 2022;13(8):1323. doi: 10.3390/mi13081323.
  • Ding W. Micro/nano-particle manipulation and adhesion studies. J Adhes Sci Technol. 2008;22(5–6):457–80. doi: 10.1163/156856108X295563.
  • Malotky DL, Chaudhury MK. Investigation of capillary forces using atomic force microscopy. Langmuir. 2001;17(25):7823–7829. doi: 10.1021/la0107796.
  • Broesch DJ, Shiang E, Frechette J. Role of substrate aspect ratio on the robustness of capillary alignment. Appl Phys Lett. 2014;104(8):081605. doi: 10.1063/1.4866459.
  • Padday JF, Pitt AR, Pashley RM. Menisci at a free liquid surface: surface tension from the maximum pull on a rod. J Chem Soc Faraday Trans. 1975;71:1919–1931. doi: 10.1039/f19757101919.
  • Ata A, Rabinovich YI, Singh RK. Role of surface roughness in capillary adhesion. J Adhes Sci Technol. 2002;16(4):337–346. doi: 10.1163/156856102760067145.
  • Wang L, Huang B, He Y, Rong W. Simulation and experiments on the capillary forces between two continuously fully wet circular disks. J Adhes Sci Technol. 2018;32(8):908–919. doi: 10.1080/01694243.2017.1387094.
  • Yang L, Hu J, Bai K. Capillary and van der Waals force between microparticles with different sizes in humid air. J Adhes Sci Technol. 2016;30(5):566–578. doi: 10.1080/01694243.2015.1111834.
  • Wu D, Zhou P, Zhao B, Howes T, Wang G. Liquid redistribution upon the liquid-bridge rupture between two unequal particles with a minimal energy method. Powder Technol. 2019;354:165–173. doi: 10.1016/j.powtec.2019.05.057.
  • Wang JP, Gallo E, François B, Gabrieli F, Lambert P. Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol. 2017;305:89–98. doi: 10.1016/j.powtec.2016.09.060.
  • Fan Z, Liu Z, Huang C, Zhang W, Lv Z, Wang L. Capillary forces between concave gripper and spherical particle for micro-objects gripping. Micromachines. 2021;12(3):285. doi: 10.3390/mi12030285.
  • Tourtit Y, Gilet T, Lambert P. Rupture of a liquid bridge between a cone and a plane. Langmuir. 2019;35(37):11979–11985. doi: 10.1021/acs.langmuir.9b01295.
  • Liang YE, Weng YH, Tsao HK, Sheng YJ. Meniscus shape and wetting competition of a drop between a cone and a plane. Langmuir. 2016;32(33):8543–8549. doi: 10.1021/acs.langmuir.6b01990.
  • Aziz H, Tafreshi HV. Competing forces on a liquid bridge between parallel and orthogonal dissimilar fibers. Soft Matter. 2019;15(35):6967–6977. doi: 10.1039/c9sm00489k.
  • Chen J, Wang P, Li M, Shen J, Howes T, Wang G. Rupture distance and shape of the liquid bridge with rough surface. Miner Eng. 2021;167:106888. doi: 10.1016/j.mineng.2021.106888.
  • Wang XS, Cui SW, Zhou L, Xu SH, Sun ZW, Zhu RZ. A generalized Young’s equation for contact angles of droplets on homogeneous and rough substrates. J Adhes Sci Technol. 2014;28(2):161–170. doi: 10.1080/01694243.2013.833401.
  • Lambert P, Chau A, Delchambre A, Régnier S. Comparison between two capillary forces models. Langmuir. 2008;24(7):3157–3163. doi: 10.1021/la7036444.
  • Chen H, Tang T, Zhao H, Law KY, Amirfazli AJ. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer. Soft Matter. 2016;12(7):1998–2008. doi: 10.1039/c5sm02451j.
  • Mannetje D, Mugele F, van den Ende D. Stick–slip to sliding transition of dynamic contact lines under AC electrowetting. Langmuir. 2013;29(48):15116–15121. doi: 10.1021/la402761m.
  • Mannetje D, Ghosh S, Lagraauw R, Otten S, Pit A, Berendsen CW, Zeegers JC, van den Ende D, Mugele F. Trapping of drops by wetting defects. Nat Commun. 2014;5(1):3559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.