239
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A new insight into corrosion inhibition mechanism of the corrosion inhibitors: review on DFT and MD simulation

, , , , , , & show all
Pages 1563-1584 | Received 02 Aug 2023, Accepted 14 Oct 2023, Published online: 27 Oct 2023

References

  • Esmaily M, Svensson JE, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017;89:92–193. doi: 10.1016/j.pmatsci.2017.04.011.
  • López-Ortega A, Bayón R, Arana JL. Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater. Surf Coat Technol. 2018;349:1083–1097. doi: 10.1016/j.surfcoat.2018.06.089.
  • Koch G. 1 - Cost of corrosion. In: El-Sherik AM, editor. Trends in oil and gas corrosion research and technologies. Boston: Woodhead Publishing; 2017. p. 3–30.
  • Verma C, Lgaz H, Verma DK, et al. Molecular dynamics and Monte Carlo simulations as powerful tools for study of interfacial adsorption behavior of corrosion inhibitors in aqueous phase: a review. J Mol Liq. 2018;260:99–120. doi: 10.1016/j.molliq.2018.03.045.
  • El Kacimi Y, Touir R, Galai M, et al. Effect of silicon and phosphorus contents in steel on its corrosion inhibition in 5 M HCl solution in the presence of cetyltrimethylammonium/KI. J Mater Environ Sci. 2016;7:371–381.
  • Dahmani Mg K, Cherkaoui M, El Hasnaoui A, et al. Cinnamon essential oil as a novel eco-friendly corrosion inhibitor of copper in 0.5 M sulfuric acid medium. J Mater Environ Sci. 2017;8:1676–1689.
  • Alaoui K, Kacimi YE, Galai M, et al. Ahmed El H, Mohamed Ebn T. Poly (1-phenylethene): as a novel corrosion inhibitor for carbon steel/hydrochloric acid interface. Anal Bioanal Electrochem. 2016;3:830–847.
  • Abd El-Hafeez GM, El-Rabeie MM, Gaber AF, et al. Electropolymerized durable coatings deposited onto Pt-electrode as corrosion inhibitor for mild steel. J Adhes Sci Technol. 2022;36(11):1227–1246. doi: 10.1080/01694243.2021.1963602.
  • Kokalj A. Corrosion inhibitors: physisorbed or chemisorbed? Corros Sci. 2022;196:109939. doi: 10.1016/j.corsci.2021.109939.
  • Liu A, Guan W, Zhao X, et al. Investigation on the interfacial behavior of polyorganic inhibitors on a metal surface by DFT study and MD simulation. Appl Surf Sci. 2021;541:148570. doi: 10.1016/j.apsusc.2020.148570.
  • Verma DK, Aslam R, Aslam J, et al. Computational modeling: theoretical predictive tools for designing of potential organic corrosion inhibitors. J Mol Struct. 2021;1236:130294. doi: 10.1016/j.molstruc.2021.130294.
  • Dahmani K, Galai M, Ouakki M, et al. Corrosion inhibition of copper in sulfuric acid via environmentally friendly inhibitor (Myrtus Communis): combining experimental and theoretical methods. J Mol Liq. 2022;347:117982. doi: 10.1016/j.molliq.2021.117982.
  • Dahmani K, Galai M, Ech-Chebab A, et al. Pistacia lentiscus extract as a green inhibitor for copper corrosion in 0.5 M of H2SO4: electrochemical characterization and theoretical investigations. J Appl Electrochem. 2022;52(11):1629–1646. doi: 10.1007/s10800-022-01732-8.
  • Dkhireche N, Galai M, Ouakki M, et al. Electrochemical and theoretical study of newly quinoline derivatives as a corrosion inhibitors adsorption on mild steel in phosphoric acid media. Inorg Chem Commun. 2020;121:108222. doi: 10.1016/j.inoche.2020.108222.
  • Galai M, Rbaa M, Serrar H, et al. S-Thiazine as effective inhibitor of mild steel corrosion in HCl solution: synthesis, experimental, theoretical and surface assessment. Colloids Surf, A. 2021;613:126127. doi: 10.1016/j.colsurfa.2020.126127.
  • Haldhar R, Kim S-C, Berisha A, et al. Corrosion inhibition abilities of phytochemicals: a combined computational studies. J Adhes Sci Technol. 2023;37(5):842–857. doi: 10.1080/01694243.2022.2047379.
  • Kaya S, Banerjee P, Saha SK, et al. Theoretical evaluation of some benzotriazole and phospono derivatives as aluminum corrosion inhibitors: DFT and molecular dynamics simulation approaches. RSC Adv. 2016;6(78):74550–74559. doi: 10.1039/C6RA14548E.
  • Guo L, Kaya S, Obot IB, et al. Toward understanding the anticorrosive mechanism of some thiourea derivatives for carbon steel corrosion: a combined DFT and molecular dynamics investigation. J Colloid Interface Sci. 2017;506:478–485. doi: 10.1016/j.jcis.2017.07.082.
  • Ammouchi N, Allal H, Belhocine Y, et al. DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. J Mol Liq. 2020;300:112309. doi: 10.1016/j.molliq.2019.112309.
  • Abdul Rahiman AFS, Sethumanickam S. Corrosion inhibition, adsorption and thermodynamic properties of poly(vinyl alcohol-cysteine) in molar HCl. Arabian J Chem. 2017;10:S3358–S3366. doi: 10.1016/j.arabjc.2014.01.016.
  • Samimi A, Zarinabadi S. An analysis of polyethylene coating corrosion in oil and gas pipelines. J Am Sci. 2011;7:1032–1036.
  • Hou B, Li X, Ma X, et al. The cost of corrosion in China. Npj Mater Degrad. 2017;1(1):4. doi: 10.1038/s41529-017-0005-2.
  • Verma C, Ebenso EE, Quraishi MA. Corrosion inhibitors for ferrous and non-ferrous metals and alloys in ionic sodium chloride solutions: a review. J Mol Liq. 2017;248:927–942. doi: 10.1016/j.molliq.2017.10.094.
  • Gupta RK, Malviya M, Verma C, et al. Aminoazobenzene and diaminoazobenzene functionalized graphene oxides as novel class of corrosion inhibitors for mild steel: experimental and DFT studies. Mater Chem Phys. 2017;198:360–373. doi: 10.1016/j.matchemphys.2017.06.030.
  • Trethewey KR, Roberge PR. Expert overview corrosion management in the twenty-first century. Br Corros J. 1995;30(3):192–198. doi: 10.1179/bcj.1995.30.3.192.
  • Umoren SA, Solomon MM, Obot IB, et al. A critical review on the recent studies on plant biomaterials as corrosion inhibitors for industrial metals. J Ind Eng Chem. 2019;76:91–115. doi: 10.1016/j.jiec.2019.03.057.
  • Jafari H, Akbarzade K, Danaee I. Corrosion inhibition of carbon steel immersed in a 1M HCl solution using benzothiazole derivatives. Arabian J Chem. 2019;12(7):1387–1394. doi: 10.1016/j.arabjc.2014.11.018.
  • Gangopadhyay S, Mahanwar PA. Recent developments in the volatile corrosion inhibitor (VCI) coatings for metal: a review. J Coat Technol Res. 2018;15(4):789–807. doi: 10.1007/s11998-017-0015-6.
  • Verma C, Ebenso EE, Bahadur I, et al. An overview on plant extracts as environmental sustainable and green corrosion inhibitors for metals and alloys in aggressive corrosive media. J Mol Liq. 2018;266:577–590. doi: 10.1016/j.molliq.2018.06.110.
  • Alar V, Stojanović I, Mezdić D. A comparative study of green inhibitors for galvanized steel in aqueous solutions. Metals. 2020;10(4):448. doi: 10.3390/met10040448.
  • Umoren SA, Eduok UM. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: a review. Carbohydr Polym. 2016;140:314–341. doi: 10.1016/j.carbpol.2015.12.038.
  • Ralkhal S, Shahrabi T, Ramezanzadeh B. Synthesis and construction of a highly potent hybrid organic/inorganic anti-corrosive pigment for effective corrosion control of mild steel in simulated seawater. Constr Build Mater. 2019;222:400–413. doi: 10.1016/j.conbuildmat.2019.06.121.
  • Izadi M, Shahrabi T, Mohammadi I, et al. Synthesis of impregnated Na+-montmorillonite as an eco-friendly inhibitive carrier and its subsequent protective effect on silane coated mild steel. Prog Org Coat. 2019;135:135–147. doi: 10.1016/j.porgcoat.2019.05.037.
  • Yadav M, Kumar S. Experimental, thermodynamic and quantum chemical studies on adsorption and corrosion inhibition performance of synthesized pyridine derivatives on N80 steel in HCl solution. Surface Interface Anal. 2014;46(4):254–268. doi: 10.1002/sia.5408.
  • Ongun Yüce A, Doğru Mert B, Kardaş G, et al. Electrochemical and quantum chemical studies of 2-amino-4-methyl-thiazole as corrosion inhibitor for mild steel in HCl solution. Corros Sci. 2014;83:310–316. doi: 10.1016/j.corsci.2014.02.029.
  • Moretti G, Guidi F, Grion G. Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid. Corros Sci. 2004;46(2):387–403. doi: 10.1016/S0010-938X(03)00150-1.
  • Schreiber F. Structure and growth of self-assembling monolayers. Prog Surf Sci. 2000;65(5-8):151–257. doi: 10.1016/S0079-6816(00)00024-1.
  • Kokalj A. Molecular modeling of organic corrosion inhibitors: calculations, pitfalls, and conceptualization of molecule–surface bonding. Corros Sci. 2021;193:109650. doi: 10.1016/j.corsci.2021.109650.
  • Walczak MS, Morales-Gil P, Lindsay R. Determining Gibbs energies of adsorption from corrosion inhibition efficiencies: is it a reliable approach? Corros Sci. 2019;155:182–185. doi: 10.1016/j.corsci.2019.04.040.
  • Ebenso EE, Verma C, Olasunkanmi LO, et al. Molecular modelling of compounds used for corrosion inhibition studies: a review. Phys Chem Chem Phys. 2021;23(36):19987–20027. doi: 10.1039/d1cp00244a.
  • Saha SK, Hens A, Murmu NC, et al. A comparative density functional theory and molecular dynamics simulation studies of the corrosion inhibitory action of two novel N-heterocyclic organic compounds along with a few others over steel surface. J Mol Liq. 2016;215:486–495. doi: 10.1016/j.molliq.2016.01.024.
  • Singh A, Ansari KR, Quraishi MA, et al. Effect of electron donating functional groups on corrosion inhibition of J55 steel in a sweet corrosive environment: experimental, density functional theory, and molecular dynamic simulation. Materials. 2018;12(1):17. doi: 10.3390/ma12010017.
  • Saha SK, Murmu M, Murmu NC, et al. Molecular level insights for the corrosion inhibition effectiveness of three amine derivatives on the carbon steel surface in the adverse medium: a combined density functional theory and molecular dynamics simulation study. Surf Interfaces. 2018;10:65–73. doi: 10.1016/j.surfin.2017.11.007.
  • Fang C, Li WF, Koster RS, et al. The accurate calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations. Phys Chem Chem Phys. 2015;17(1):365–375. doi: 10.1039/c4cp04202f.
  • Zhang J, Qiao G, Hu S, et al. Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups. Corros Sci. 2011;53(1):147–152. doi: 10.1016/j.corsci.2010.09.007.
  • Obot IB, Gasem ZM. Theoretical evaluation of corrosion inhibition performance of some pyrazine derivatives. Corros Sci. 2014;83:359–366. doi: 10.1016/j.corsci.2014.03.008.
  • Obot IB, Obi-Egbedi NO. 2,3-Diphenylbenzoquinoxaline: a new corrosion inhibitor for mild steel in sulphuric acid. Corros Sci. 2010;52(1):282–285. doi: 10.1016/j.corsci.2009.09.013.
  • Mousavi M, Mohammadalizadeh M, Khosravan A. Theoretical investigation of corrosion inhibition effect of imidazole and its derivatives on mild steel using cluster model. Corros Sci. 2011;53(10):3086–3091. doi: 10.1016/j.corsci.2011.05.034.
  • Gece G, Bilgiç S. A theoretical study on the inhibition efficiencies of some amino acids as corrosion inhibitors of nickel. Corros Sci. 2010;52(10):3435–3443. doi: 10.1016/j.corsci.2010.06.015.
  • Zarrouk A, Hammouti B, Dafali A, et al. A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. J Saudi Chem Soc. 2014;18(5):450–455. doi: 10.1016/j.jscs.2011.09.011.
  • Fukui K. Role of frontier orbitals in chemical reactions. Science. 1982;218(4574):747–754. doi: 10.1126/science.218.4574.747.
  • Khaled KF, Amin MA. Computational and electrochemical investigation for corrosion inhibition of nickel in molar nitric acid by piperidines. J Appl Electrochem. 2008;38(11):1609–1621. doi: 10.1007/s10800-008-9604-5.
  • Bentiss F, Traisnel M, Vezin H, et al. 2,5-Bis(4-dimethylaminophenyl)-1,3,4-oxadiazole and 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole as corrosion inhibitors for mild steel in acidic media. Corros Sci. 2004;46(11):2781–2792. doi: 10.1016/j.corsci.2004.04.001.
  • Parr RG, Donnelly RA, Levy M, et al. Electronegativity: the density functional viewpoint. J Chem Phys. 1978;68(8):3801–3807. doi: 10.1063/1.436185.
  • Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 1983;105(26):7512–7516. doi: 10.1021/ja00364a005.
  • Iczkowski RP, Margrave JL. Electronegativity. J. Am. Chem. Soc. 1961;83(17):3547–3551. doi: 10.1021/ja01478a001.
  • Parr RG, Szentpály L, Liu S. Electrophilicity index. J. Am. Chem. Soc. 1999;121(9):1922–1924. doi: 10.1021/ja983494x.
  • Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory. Chem Rev. 2003;103(5):1793–1873. doi: 10.1021/cr990029p.
  • Kovačević N, Kokalj A. DFT study of interaction of azoles with Cu(111) and Al(111) surfaces: role of azole nitrogen atoms and dipole–dipole interactions. J. Phys. Chem. C. 2011;115(49):24189–24197. doi: 10.1021/jp207076w.
  • Saha SK, Dutta A, Ghosh P, et al. Novel schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium: experimental and theoretical approach. Phys Chem Chem Phys. 2016;18(27):17898–17911. doi: 10.1039/c6cp01993e.
  • Chauhan DS, Quraishi MA, Sorour AA, et al. Triazole-modified chitosan: a biomacromolecule as a new environmentally benign corrosion inhibitor for carbon steel in a hydrochloric acid solution. RSC Adv. 2019;9(26):14990–15003. doi: 10.1039/c9ra00986h.
  • Guo L, Zhang ST, Lv TM, et al. Comparative theoretical study on the corrosion inhibition properties of benzoxazole and benzothiazole. Res Chem Intermed. 2015;41(6):3729–3742. doi: 10.1007/s11164-013-1485-5.
  • Madkour LH, Kaya S, Obot IB. Computational, monte carlo simulation and experimental studies of some arylazotriazoles (AATR) and their copper complexes in corrosion inhibition process. J Mol Liq. 2018;260:351–374. doi: 10.1016/j.molliq.2018.01.055.
  • Hsissou R, Abbout S, Safi Z, et al. Synthesis and anticorrosive properties of epoxy polymer for CS in [1 M] HCl solution: electrochemical, AFM, DFT and MD simulations. Constr Build Mater. 2021;270:121454. doi: 10.1016/j.conbuildmat.2020.121454.
  • Nourpour P, Hamdi M, Taghipour S, et al. Theoretical evaluation of spirocyclic compounds as green corrosion inhibitors for carbon steel. Thin Solid Films. 2023;766:139658. doi: 10.1016/j.tsf.2022.139658.
  • Arrousse N, Fernine Y, Haldhar R, et al. Corrosion protection studies of different alloys in 1 M HCl by benzimidazole derivative: combined molecular dynamic simulations/DFT. J Environ Chem Eng. 2023;11(3):109642. doi: 10.1016/j.jece.2023.109642.
  • Tang H, Sun J, Su D, et al. Coumarin as a green inhibitor of chloride-induced aluminum corrosion: theoretical calculation and experimental exploration. RSC Adv. 2021;11(40):24926–24937. doi: 10.1039/d1ra02622d.
  • AlFalah MGK, Guo L, Saracoglu M, et al. Corrosion inhibition performance of 2-ethyl phenyl-2, 5-dithiohydrazodicarbonamide on Fe (110)/Cu (111) in acidic/alkaline solutions: synthesis, experimental, theoretical, and molecular dynamic studies. J Indian Chem Soc. 2022;99(9):100656. doi: 10.1016/j.jics.2022.100656.
  • Monti S, Li C, Carravetta V. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110). J. Phys. Chem. C. 2013;117(10):5221–5228. doi: 10.1021/jp312828d.
  • Senftle TP, Hong S, Islam MM, et al. The ReaxFF reactive force-field: development, applications and future directions. Npj Comput Mater. 2016;2(1):15011. doi: 10.1038/npjcompumats.2015.11.
  • Ta HTT, Tran NV, Tieu AK, et al. Computational tribochemistry: a review from classical and quantum mechanics studies. J. Phys. Chem. C. 2021;125(31):16875–16891. doi: 10.1021/acs.jpcc.1c03725.
  • Kumar D, Jain V, Rai B. Imidazole derivatives as corrosion inhibitors for copper: a DFT and reactive force field study. Corros Sci. 2020;171:108724. doi: 10.1016/j.corsci.2020.108724.
  • van Duin ACT, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A. 2001;105(41):9396–9409. doi: 10.1021/jp004368u.
  • Kumar D, Jain V, Rai B. Capturing the synergistic effects between corrosion inhibitor molecules using density functional theory and ReaxFF simulations - A case for benzyl azide and butyn-1-ol on Cu surface. Corros Sci. 2022;195:109960. doi: 10.1016/j.corsci.2021.109960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.