99
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Effect of demethylation of acetone-soluble softwood kraft lignin on adhesion of lignin–phenol–formaldehyde resins

& ORCID Icon
Pages 1738-1755 | Received 18 May 2023, Accepted 18 Oct 2023, Published online: 05 Nov 2023

References

  • Pizzi, A., Mittal, K.L., Eds. Handbook of Ahesive Technology, 2nd Edition, CRC Press, 2023.
  • SRI consulting. World Petrochemical (WP) report on PF Resins; 2013. http://www.sriconsulting.com/WP/Public/Reports/pf_resins/.
  • Siddiqui H. Production of lignin-based phenolic resin using De-Polymerized kraft lignin and process optimization [master’s thesis]. London, ON, Canada: The University of Western Ontario; 2013.
  • Effendi A, Gerhauser H, Bridgwater AV. Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev. 2008;12(8):2092–2116. doi: 10.1016/j.rser.2007.04.008.
  • Hall J, Matos S, Martin M, et al. Overcoming technological, commercial, organizational and social uncertainties of innovation: the case of Forest biomass as a replacement of petroleum-based feed stocks In: 2012 Proceedings of PICMET'12: Technology Management for Emerging Technologies; IEEE; 2012:p. 249–258.
  • Danielson B, Simonson R. Kraft lignin in phenol formaldehyde resin. Part 1. Partial replacement of phenol by kraft lignin in phenol formaldehyde adhesives for plywood. J Adhes Sci Technol. 1998;12(9):923–939. doi: 10.1163/156856198X00542.
  • Danielson B, Simonson R. Kraft lignin in phenol formaldehyde resin. Part 2. Evaluation of an industrial trial. J Adhes Sci Technol. 1998;12(9):941–946. doi: 10.1163/156856198X00551.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12-13):1781–1788. doi: 10.1016/j.fuel.2006.12.013.
  • Raj A, Devendra LP, Sukumaran RK. Comparative evaluation of laccase mediated oxidized and unoxidized lignin of sugarcane bagasse for the synthesis of lignin-based formaldehyde resin. Ind Crops Prod. 2020;150:112385. doi: 10.1016/j.indcrop.2020.112385.
  • Schlee P, Hosseinaei O, O' Keefe CA, et al. Hardwood versus softwood kraft lignin–precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors. J Mater Chem A. 2020;8(44):23543–23554. doi: 10.1039/D0TA09093J.
  • Tran H, Vakkilainnen EK. The kraft chemical recovery process. Tappi Kraft Pulping Short Course; 2008:1–8.
  • Dessbesell L, Paleologou M, Leitch M, et al. Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers. Renew Sustain Energy Rev. 2020;123:109768. doi: 10.1016/j.rser.2020.109768.
  • Granata A, Argyropoulos DS. 2-Chloro-4, 4, 5, 5-tetramethyl-1, 3, 2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins. J Agric Food Chem. 1995;43(6):1538–1544. doi: 10.1021/jf00054a023.
  • Gierer J. Chemical aspects of kraft pulping. Wood Sci Technol. 1980;14(4):241–266. doi: 10.1007/BF00383453.
  • Tomani P, Axegård P, Berglin N, et al. Integration of lignin removal into a kraft pulp mill and use of lignin as a biofuel. Cellul Chem Technol. 2011;45(7):533.
  • Crestini C, Lange H, Sette M, et al. On the structure of softwood kraft lignin. Green Chem. 2017;19(17):4104–4121. doi: 10.1039/C7GC01812F.
  • Azadi P, Inderwildi OR, Farnood R, et al. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev. 2013;21:506–523. doi: 10.1016/j.rser.2012.12.022.
  • Chakar FS, Ragauskas AJ. Review of current and future softwood kraft lignin process chemistry. Ind Crops Prod. 2004;20(2):131–141. doi: 10.1016/j.indcrop.2004.04.016.
  • Karaaslan MA, Cho M, Liu LY, et al. Refining the properties of softwood kraft lignin with acetone: effect of solvent fractionation on the thermomechanical behavior of electrospun fibers. ACS Sustain Chem Eng. 2021;9(1):458–470. doi: 10.1021/acssuschemeng.0c07634.
  • Boeriu CG, Fiţigău FI, Gosselink RJ, et al. Fractionation of five technical lignins by selective extraction in green solvents and characterisation of isolated fractions. Ind Crops Prod. 2014;62:481–490. doi: 10.1016/j.indcrop.2014.09.019.
  • Sadeghifar H, Ragauskas A. Perspective on technical lignin fractionation. ACS Sustain Chem Eng. 2020;8(22):8086–8101. doi: 10.1021/acssuschemeng.0c01348.
  • Hu L, Pan H, Zhou Y, et al. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources, NC State University. 2011; 6(3):3515–3525.
  • Pizzi A, Cameron FA, van der Klashorst GH. Soda bagasse lignin adhesives for particleboard: preliminary results; 1989.
  • Klašnja B, Kopitović S. Lignin-phenol-formaldehyde resins as adhesives in the production of plywood. Holz als Roh-und Werkstoff. 1992;50(7-8):282–285. doi: 10.1007/BF02615352.
  • Malutan T, Nicu R, Popa VI.  Contribution to the study of hydroxymetylation reaction of alkali lignin.  BioResources. 2008;3(1):13–20.
  • Zhao W, Wei C, Cui Y, et al. Efficient demethylation of lignin for polyphenol production enabled by low-cost bifunctional protic ionic liquid under mild and halogen-free conditions. J Chem Eng. 2022;443:136486. doi: 10.1016/j.cej.2022.136486.
  • Malutan T, Nicu R, Popa VI. Contribution to the study of hydroxymetylation reaction of alkali lignin. BioResources. 2007;3(1):13–20. doi: 10.15376/biores.3.1.13-20.
  • Okamoto T, Takeda H, Funabiki T, et al. Fundamental studies on the development of lignin-based adhesives, I. Catalytic demethylation of anisole with molecular oxygen. React Kinet Catal Lett. 1996;58(2):237–242. doi: 10.1007/BF02067028.
  • Wu S, Zhan H. Characteristics of demethylated wheat straw soda lignin and its utilization in lignin-based phenolic formaldehyde resins. Cellul Chem Technol. 2001;35(3-4):253–262.
  • Ferhan M, Yan N, Sain M. A new method for demethylation of lignin from woody biomass using biophysical methods. J Chem Eng Process Technol. 2013;4(5):160.
  • Song Y, Wang Z, Yan N, et al. Demethylation of wheat straw alkali lignin for application in phenol formaldehyde adhesives. Polymers (Basel). 2016;8(6):209. doi: 10.3390/polym8060209.
  • Li J, Wang W, Zhang S, et al. Preparation and characterization of lignin demethylated at atmospheric pressure and its application in fast curing biobased phenolic resins. RSC Adv. 2016;6(71):67435–67443. doi: 10.1039/C6RA11966B.
  • Hao C, Liu T, Zhang S, et al. High‐lignin‐content, removable, and glycol‐assisted repairable coating based on dynamic covalent bonds. ChemSusChem. 2019;12(5):1049–1058. doi: 10.1002/cssc.201802615.
  • Zhang W, Ma Y, Wang C, et al. Preparation and properties of lignin–phenol–formaldehyde resins based on different biorefinery residues of agricultural biomass. Ind Crops Prod. 2013;43:326–333. doi: 10.1016/j.indcrop.2012.07.037.
  • Chen H, Tang T, Amirfazli A. Effects of surface wettability on fast liquid transfer. Phys Fluids. 2015;27(11):112102. doi: 10.1063/1.4934961.
  • Chen H, Tang T, Zhao H, et al. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer. Soft Matter. 2016;12(7):1998–2008. doi: 10.1039/c5sm02451j.
  • Sadeghifar H, Argyropoulos DS. Macroscopic behavior of kraft lignin fractions: melt stability considerations for lignin–polyethylene blends. ACS Sustain Chem Eng. 2016;4(10):5160–5166. doi: 10.1021/acssuschemeng.6b00636.
  • Liu XM, Guo QJ. Synthesis and property of foamable phenol–formaldehyde resin. China Plast Ind. 2007;35:4–8.
  • Hu L, Pan H, Zhou Y, et al. Chemical groups and structural characterization of lignin via thiol-mediated demethylation. J Wood Chem Technol. 2014;34(2):122–134. doi: 10.1080/02773813.2013.844165.
  • Li J, Zhang J, Zhang S, et al. Fast curing bio-based phenolic resins via lignin demethylated under mild reaction condition. Polymers. 2017;9(12):428. doi: 10.3390/polym9090428.
  • Tejado A, Pena C, Labidi J, et al. I. Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis. Bioresour Technol. 2007;98(8):1655–1663.
  • Meng X, Crestini C, Ben H, et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat Protoc. 2019;14(9):2627–2647. doi: 10.1038/s41596-019-0191-1.
  • Younesi-Kordkheili H, Pizzi A. Acid ionic liquids as a new hardener in urea-glyoxal adhesive resins. Polymers. 2016;8(3):57. doi: 10.3390/polym8030057.
  • Younesi-Kordkheili H, Pizzi A. Properties of plywood panels bonded with ionic liquid-modified lignin–phenol–formaldehyde resin. J Adhes. 2018;94(2):143–154. doi: 10.1080/00218464.2016.1263945.
  • Park BD, Riedl B, Hsu E, et al. Effects of weight average molecular mass of phenol-formaldehyde adhesives on medium density fiberboard performance. Holz als Roh-und Werkstoff. 1998;56(3):155–161. doi: 10.1007/s001070050289.
  • Guo, Z., Liu, Z., Ye, L., Ge, K.., Zhao, T. , The production of lignin-phenol-formaldehyde resin derived carbon fibers stabilized by BN preceramic polymer. Mater. Lett. 2015, 142: 49–51.
  • Wang M, Leitch M, Xu CC. Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur Polym J. 2009;45(12):3380–3388. doi: 10.1016/j.eurpolymj.2009.10.003.
  • Jin Y, Cheng X, Zheng Z. Preparation and characterization of phenol–formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresour Technol. 2010;101(6):2046–2048. doi: 10.1016/j.biortech.2009.09.085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.