432
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Force adaptation through the intravenous route in naïve mice

, & ORCID Icon
Pages 131-141 | Received 17 Mar 2023, Accepted 11 Jul 2023, Published online: 21 Jul 2023

References

  • Gazzola M, Flamand N, Bossé Y. [Extracellular molecules controlling the contraction of airway smooth muscle and their potential contribution to bronchial hyperresponsiveness]. Rev Mal Respir. 2020;37(6):462–473. doi:10.1016/j.rmr.2020.03.009.
  • Auger L, Mailhot-Larouche S, Tremblay F, Poirier M, Farah C, Bossé Y. The contractile lability of smooth muscle in asthmatic airway hyperresponsiveness. Expert Rev Respir Med. 2016;10(1):19–27. doi:10.1586/17476348.2016.1111764.
  • Bossé Y, Chin LY, Pare PD, Seow CY. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2009;40(1):13–18. doi:10.1165/rcmb.2008-0150OC.
  • Bossé Y, Chin LY, Pare PD, Seow CY. Chronic activation in shortened airway smooth muscle: a synergistic combination underlying airway hyperresponsiveness? Am J Respir Cell Mol Biol. 2010;42(3):341–348. doi:10.1165/rcmb.2008-0448OC.
  • Pascoe C, Jiao Y, Seow CY, Paré PD, Bossé Y. Force oscillations simulating breathing maneuvers do not prevent force adaptation. Am J Respir Cell Mol Biol. 2012;47(1):44–49. doi:10.1165/rcmb.2011-0429OC.
  • Lee-Gosselin A, Gendron D, Blanchet MR, Marsolais D, Bossé Y. The gain of smooth muscle’s contractile capacity induced by tone on in vivo airway responsiveness in mice. J Appl Physiol (1985). 2015;118(6):692–698. doi:10.1152/japplphysiol.00645.2014.
  • Boucher M, Dufour-Mailhot A, Tremblay-Pitre S, et al. In mice of both sexes, repeated contractions of smooth muscle in vivo greatly enhance the response of peripheral airways to methacholine. Respir Physiol Neurobiol. 2022;304:103938. doi:10.1016/j.resp.2022.103938.
  • Gazzola M, Lortie K, Henry C, et al. Airway smooth muscle tone increases airway responsiveness in healthy young adults. Am J Physiol Lung Cell Mol Physiol. 2017;312(3):L348–L357. doi:10.1152/ajplung.00400.2016.
  • Gazzola M, Henry C, Lortie K, et al. Airway smooth muscle tone increases actin filamentogenesis and contractile capacity. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L442–L451. doi:10.1152/ajplung.00205.2019.
  • Bates JH. Systems physiology of the airways in health and obstructive pulmonary disease. Wiley Interdiscip Rev Syst Biol Med. 2016;8(5):423–437. doi:10.1002/wsbm.1347.
  • Dame Carroll JR, Magnussen JS, Berend N, Salome CM, King GG. Greater parallel heterogeneity of airway narrowing and airway closure in asthma measured by high-resolution CT. Thorax. 2015;70(12):1163–1170. doi:10.1136/thoraxjnl-2014-206387.
  • Farrow CE, Salome CM, Harris BE, Bailey DL, Berend N, King GG. Peripheral ventilation heterogeneity determines the extent of bronchoconstriction in asthma. J Appl Physiol (1985). 2017;123(5):1188–1194. doi:10.1152/japplphysiol.00640.2016.
  • Downie SR, Salome CM, Verbanck S, Thompson B, Berend N, King GG. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax. 2007;62(8):684–689. doi:10.1136/thx.2006.069682.
  • King GG, Carroll JD, Muller NL, et al. Heterogeneity of narrowing in normal and asthmatic airways measured by HRCT. Eur Respir J. 2004;24(2):211–218. doi:10.1183/09031936.04.00047503.
  • Venegas JG, Winkler T, Musch G, et al. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature. 2005;434(7034):777–782. doi:10.1038/nature03490.
  • Chapman DG, Berend N, King GG, Salome CM. Increased airway closure is a determinant of airway hyperresponsiveness. Eur Respir J. 2008;32(6):1563–1569. doi:10.1183/09031936.00114007.
  • Farrow CE, Salome CM, Harris BE, et al. Airway closure on imaging relates to airway hyperresponsiveness and peripheral airway disease in asthma. J Appl Physiol (1985)Gov’t. J Appl Physiol. 2012;113(6):958–966. doi:10.1152/japplphysiol.01618.2011.
  • Lundblad LK, Thompson-Figueroa J, Allen GB, et al. Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure. Am J Respir Crit Care Med. 2007;175(8):768–774. doi:10.1164/rccm.200610-1410OC.
  • Yang L, Feuchtinger A, Moller W, et al. Three-Dimensional Quantitative Co-Mapping of Pulmonary Morphology and Nanoparticle Distribution with Cellular Resolution in Nondissected Murine Lungs. ACS Nano. 2019;13(2):1029–1041. doi:10.1021/acsnano.8b07524.
  • Robichaud A, Fereydoonzad L, Schuessler TF. Delivered dose estimate to standardize airway hyperresponsiveness assessment in mice. Am J Physiol Lung Cell Mol Physiol. 2015;308(8):L837–46. doi:10.1152/ajplung.00343.2014.
  • Phung TN, Sinclair SE, Makena P, Molthen RC, Waters CM. Dynamic airway constriction in rats: heterogeneity and response to deep inspiration. Am J Physiol Lung Cell Mol Physiol. 2019;317(1):L39–L48. doi:10.1152/ajplung.00050.2019.
  • Dugernier J, Reychler G, Wittebole X, et al. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study. Ann Intensive Care. 2016;6(1):73. doi:10.1186/s13613-016-0169-x.
  • Porra L, Degrugilliers L, Broche L, et al. Quantitative Imaging of Regional Aerosol Deposition, Lung Ventilation and Morphology by Synchrotron Radiation CT. Sci Rep. 2018;8(1):3519. doi:10.1038/s41598-018-20986-x.
  • Petak F, Hantos Z, Adamicza A, Asztalos T, Sly PD. Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol (1985). 1997;82(5):1479–1487. doi:10.1152/jappl.1997.82.5.1479.
  • Wagers SS, Haverkamp HC, Bates JH, et al. Intrinsic and antigen-induced airway hyperresponsiveness are the result of diverse physiological mechanisms. J Appl Physiol (1985). 2007;102(1):221–230. doi:10.1152/japplphysiol.01385.2005.
  • Lutchen KR, Hantos Z, Petak F, Adamicza A, Suki B. Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J Appl Physiol (1985). 1996;80(5):1841–1849. doi:10.1152/jappl.1996.80.5.1841.
  • Lutchen KR, Gillis H. Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J Appl Physiol (1985). 1997;83(4):1192–1201. doi:10.1152/jappl.1997.83.4.1192.
  • Evans CM, Raclawska DS, Ttofali F, et al. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat Commun. 2015;6:6281. doi:10.1038/ncomms7281.
  • Agrawal A, Rengarajan S, Adler KB, et al. Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma. J Appl Physiol (1985). 2007;102(1):399–405. doi:10.1152/japplphysiol.00630.2006.
  • Singer M, Martin LD, Vargaftig BB, et al. A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nat Med. 2004;10(2):193–196. doi:10.1038/nm983.
  • Ishihara H, Shimura S, Satoh M, et al. Muscarinic receptor subtypes in feline tracheal submucosal gland secretion. Am J Physiol. 1992;262(2 Pt 1):L223–8. doi:10.1152/ajplung.1992.262.2.L223.
  • Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS. The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc R Soc Lond B Biol Sci. 1975;192(1106):49–76. doi:10.1098/rspb.1975.0151.
  • Kuyper LM, Pare PD, Hogg JC, et al. Characterization of airway plugging in fatal asthma. Am J Med. 2003;115(1):6–11. doi:10.1016/s0002-9343(03)00241-9.
  • O’Riordan TG, Walser L, Smaldone GC. Changing patterns of aerosol deposition during methacholine bronchoprovocation. Chest. 1993;103(5):1385–1389.
  • Nagase T, Moretto A, Ludwig MS. Airway and tissue behavior during induced constriction in rats: intravenous vs. aerosol administration. J Appl Physiol (1985). 1994;76(2):830–838. doi:10.1152/jappl.1994.76.2.830.
  • Salerno FG, Moretto A, Dallaire M, Ludwig MS. How mode of stimulus affects the relative contribution of elastance and hysteresivity to changes in lung tissue resistance. J Appl Physiol (1985). 1995;78(1):282–287. doi:10.1152/jappl.1995.78.1.282.
  • Jonasson S, Hedenstierna G, Hedenstrom H, Hjoberg J. Comparisons of effects of intravenous and inhaled methacholine on airway physiology in a murine asthma model. Respir Physiol Neurobiol. 2009;165(2-3):229–236. doi:10.1016/j.resp.2008.12.005.
  • Boucher M, Henry C, Khadangi F, et al. Effects of airway smooth muscle contraction and inflammation on lung tissue compliance. Am J Physiol Lung Cell Mol Physiol. 2022;322(2):L294–L304. doi:10.1152/ajplung.00384.2021.
  • Card JW, Carey MA, Bradbury JA, et al. Gender differences in murine airway responsiveness and lipopolysaccharide-induced inflammation. J Immunol. 2006;177(1):621–630. doi:10.4049/jimmunol.177.1.621.
  • Lauzon AM, Bates JH. Kinetics of respiratory system elastance after airway challenge in dogs. J Appl Physiol (1985). 2000;89(5):2023–2029. doi:10.1152/jappl.2000.89.5.2023.
  • Bates JH. Chap 3: The linear single-compartement model. In Lung Mechanics: An Inverse Modeling Approach. New York: Cambridge University Press; 2009. p. 37–61.
  • Rosner SR, Pascoe CD, Blankman E, et al. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics. PLoS One. 2017;12(3):e0171728. doi:10.1371/journal.pone.0171728.
  • Dufour-Mailhot A, Boucher M, Henry C, et al. Flexibility of microstructural adaptations in airway smooth muscle. J Appl Physiol (1985). 2021;130(5):1555–1561. doi:10.1152/japplphysiol.00894.2020.
  • Mailhot-Larouche S, Lortie K, Marsolais D, Flamand N, Bossé Y. An in vitro study examining the duration between deep inspirations on the rate of renarrowing. Respir Physiol Neurobiol. 2017;243:13–19. doi:10.1016/j.resp.2017.04.013.
  • Zhang W, Gunst SJ. Molecular mechanisms for the mechanical modulation of airway responsiveness. J Eng Sci Med Diagn Ther. 2019;2(010805):1–8.
  • Fredberg JJ, Inouye D, Miller B, et al. Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am J Respir Crit Care Med. 1997;156(6):1752–1759. doi:10.1164/ajrccm.156.6.9611016.
  • Wang L, Chitano P, Seow CY. Filament evanescence of myosin II and smooth muscle function. J Gen Physiol. 2021;153(3).e202012781. doi:10.1085/jgp.202012781.
  • Noble PB, McFawn PK, Mitchell HW. Responsiveness of the isolated airway during simulated deep inspirations: effect of airway smooth muscle stiffness and strain. J Appl Physiol (1985). 2007;103(3):787–795. doi:10.1152/japplphysiol.00314.2007.
  • Mitchell RW, Dowell ML, Solway J, Lakser OJ. Force Fluctuation induced Relengthening of Acetyl­choline-contracted Airway Smooth Muscle. Proc Am Thorac Soc. 2008;5(1):68–72. doi:10.1513/pats.200705-058VS.
  • Bossé Y, Chapman DG, Pare PD, King GG, Salome CM. A ‘Good’ muscle in a ‘Bad’ environment: The importance of airway smooth muscle force adaptation to airway hyperresponsiveness. Respir Physiol Neurobiol. Dec 15 2011;179(2-3):269–275. doi:10.1016/j.resp.2011.09.003.
  • Chapman DG, Pascoe CD, Lee-Gosselin A, et al. Smooth muscle in the maintenance of increased airway resistance elicited by methacholine in humans. Am J Respir Crit Care Med. 2014;190(8):879–885. doi:10.1164/rccm.201403-0502OC.
  • Bossé Y. Asthmatic airway hyperresponsiveness: the ants in the tree. Trends Mol Med. 2012;18(11):627–633. doi:10.1016/j.molmed.2012.09.002.
  • Gill R, Rojas-Ruiz A, Boucher M, Henry C, Bossé Y. More airway smooth muscle in males versus females in a mouse model of asthma: A blessing in disguise?. Exp Physiol. 2023.
  • Gump A, Haughney L, Fredberg J. Relaxation of activated airway smooth muscle: relative potency of isoproterenol vs. tidal stretch. J Appl Physiol (1985). 2001;90(6):2306–2310. doi:10.1152/jappl.2001.90.6.2306.
  • Fredberg JJ, Jones KA, Nathan M, et al. Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J Appl Physiol (1985). 1996;81(6):2703–2712. doi:10.1152/jappl.1996.81.6.2703.
  • Oliver M, Kovats T, Mijailovich SM, Butler JP, Fredberg JJ, Lenormand G. Remodeling of integrated contractile tissues and its dependence on strain-rate amplitude. Phys Rev Lett. 2010;105(15):158102. doi:10.1103/PhysRevLett.105.158102.
  • Gazzola M, Khadangi F, Clisson M, Beaudoin J, Clavel MA, Bossé Y. Airway smooth muscle adapting in dynamic conditions is refractory to the bronchodilator effect of a deep inspiration. Am J Physiol Lung Cell Mol Physiol. 2020;318(2):L452–L458. doi:10.1152/ajplung.00270.2019.