1,133
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alveolar epithelial cell growth hormone releasing hormone receptor in alveolar epithelial inflammation

, , , , , & show all
Pages 152-164 | Received 08 Jun 2023, Accepted 03 Aug 2023, Published online: 16 Aug 2023

References

  • Jansing N, McClendon J, Henson P, Tuder R, Hyde D, Zemans R. Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am J Respir Cell Mol Biol. 2017;57(5):519–526. doi:10.1165/rcmb.2017-0037MA.
  • Zacharias W, Frank D, Zepp J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555(7695):251–255. doi:10.1038/nature25786.
  • Huang G, Liang J, Huang K, et al. Basal cell-derived WNT7a promotes fibrogenesis at the fibrotic niche in idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol. 2023;68(3):302–313. doi:10.1165/rcmb.2022-0074OC.
  • Zhang C, Cai R, Lazerson A, et al. Growth hormone-releasing hormone receptor antagonist modulates lung inflammation and fibrosis due to bleomycin. Lung. 2019;197(5):541–549. doi:10.1007/s00408-019-00257-w.
  • Du L, Ho B, Zhou L, et al. Growth hormone releasing hormone signaling promotes Th17 cell differentiation and autoimmune inflammation. Nat Commun. 2023;14(1):3298. doi:10.1038/s41467-023-39023-1.
  • Akhter M, Uddin M, Schally A, Kubra K, Barabutis N. Involvement of the unfolded protein response in the protective effects of growth hormone releasing hormone antagonists in the lungs. J Cell Commun Signal. 2021;15(1):125–129. doi:10.1007/s12079-020-00593-0.
  • Uddin M, Akhter M, Singh S, et al. GHRH antagonists support lung endothelial barrier function. Tissue Barriers. 2019;7(4):1669989. doi:10.1080/21688370.2019.1669989.
  • Zhang C, Tian R, Dreifus E, et al. Activity of the growth hormone-releasing hormone antagonist MIA-602 and its underlying mechanisms of action in sarcoidosis-like granuloma. Clin Transl Immunology. 2021;10(7):e1310. doi:10.1002/cti2.1310.
  • Zarandi M, Cai R, Kovacs M, et al. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth. Peptides. 2017;89:60–70. doi:10.1016/j.peptides.2017.01.009.
  • Liang W, Ren J, Yu Q, et al. Signaling mechanisms of growth hormone-releasing hormone receptor in LPS-induced acute ocular inflammation. Proc Natl Acad Sci U S A. 2020;117(11):6067–6074. doi:10.1073/pnas.1904532117.
  • Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6(1):402. doi:10.1038/s41392-021-00791-1.
  • Jacob A, Morley M, Hawkins F, et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell. 2017;21(4):472–488.e10. doi:10.1016/j.stem.2017.08.014.
  • Jacob A, Vedaie M, Roberts D, et al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat Protoc. 2019;14(12):3303–3332. doi:10.1038/s41596-019-0220-0.
  • Kosmider B, Mason R, Bahmed K. Isolation and characterization of human alveolar type II cells. Methods Mol Biol. 2018;1809:83–90. doi:10.1007/978-1-4939-8570-8_7.
  • Kosmider B, Messier E, Janssen W, et al. Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus. Respir Res. 2012;13(1):43. doi:10.1186/1465-9921-13-43.
  • Cai R, Zhang X, Wang H, et al. Synthesis of potent antagonists of receptors for growth hormone-releasing hormone with antitumor and anti-inflammatory activity. Peptides. 2022;150:170716. doi:10.1016/j.peptides.2021.170716.
  • Schruf E, Schroeder V, Le H, et al. Recapitulating idiopathic pulmonary fibrosis related alveolar epithelial dysfunction in a human iPSC-derived air-liquid interface model. FASEB J. 2020;34(6):7825–7846. doi:10.1096/fj.201902926R.
  • Habermann AC, Gutierrez AJ, Bui LT, et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci Adv. 2020;6(28):eaba1972. doi:10.1126/sciadv.aba1972.
  • Ryan R, Mineo-Kuhn M, Kramer C, Finkelstein J. Growth factors alter neonatal type II alveolar epithelial cell proliferation. Am J Physiol. 1994;266(1 Pt 1):L17–22. doi:10.1152/ajplung.1994.266.1.L17.
  • Moyé L. Statistical methods for cardiovascular researchers. Circ Res. 2016;118(3):439–453. doi:10.1161/CIRCRESAHA.115.306305.
  • Evans K, Lee J. Alveolar wars: the rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med. 2020;9(8):867–881. doi:10.1002/sctm.19-0433.
  • Mou H. Induced pluripotent stem cell-derived alveolar type II heterogeneity: revealed by SFTPC expression. Am J Respir Cell Mol Biol. 2021;65(4):345–346. doi:10.1165/rcmb.2021-0242ED.
  • Henderson W, Chi E, Ye X, et al. Inhibition of Wnt/β-catenin/CREB binding protein (CBP) signaling reverses pulmonary fibrosis. Proc Natl Acad Sci U S A. 2010;107(32):14309–14314. doi:10.1073/pnas.1001520107.
  • Lam A, Gottardi C. β-Catenin signaling: a novel mediator of fibrosis and potential therapeutic target. Curr Opin Rheumatol. 2011;23(6):562–567. doi:10.1097/BOR.0b013e32834b3309.
  • Kiaris H, Schally A, Busto R, Halmos G, Artavanis-Tsakonas S, Varga J. Expression of a splice variant of the receptor for GHRH in 3T3 fibroblasts activates cell proliferation responses to GHRH analogs. Proc Natl Acad Sci USA. 2002;99(1):196–200. doi:10.1073/pnas.012590999.
  • Jin T, George Fantus I, Sun J. Wnt and beyond Wnt: multiple mechanisms control the transcriptional property of beta-catenin. Cell Signal. 2008;20(10):1697–1704. doi:10.1016/j.cellsig.2008.04.014.
  • Königshoff M, Kramer M, Balsara N, et al. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Invest. 2009;119(4):772–787. doi:10.1172/JCI33950.
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023–17023. doi:10.1038/sigtrans.2017.23.
  • Zhou F, Zhang H, Cong Z, et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun. 2020;11(1):5205. doi:10.1038/s41467-020-18945-0.
  • Xie T, Kulur V, Liu N, et al. Mesenchymal growth hormone receptor deficiency leads to failure of alveolar progenitor cell function and severe pulmonary fibrosis. Sci Adv. 2021;7:6005. doi:10.1126/sciadv.abg6005.
  • Zhang C, Cui T, Cai R, et al. Growth hormone-releasing hormone in lung physiology and pulmonary disease. Cells. 2020;9:2331. doi:10.3390/cells9102331.
  • Cui T, Jimenez J, Block N, et al. Agonistic analogs of growth hormone releasing hormone (GHRH) promote wound healing by stimulating the proliferation and survival of human dermal fibroblasts through ERK and AKT pathways. Oncotarget. 2016;7(33):52661–52672. doi:10.18632/oncotarget.11024.
  • Willis B, Liebler J, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol. 2005;166(5):1321–1332. doi:10.1016/s0002-9440(10)62351-6.
  • Ware L, Matthay M. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334–1349. doi:10.1056/NEJM200005043421806.
  • Jaeger B, Schupp J, Plappert L, et al. Airway basal cells show a dedifferentiated KRT17high phenotype and promote fibrosis in idiopathic pulmonary fibrosis. Nat Commun. 2022;13(1):5637. doi:10.1038/s41467-022-33193-0.
  • Kathiriya J, Wang C, Zhou M, et al. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat Cell Biol. 2022;24(1):10–23. doi:10.1038/s41556-021-00809-4.
  • Kim T, Kim S, Seo J, et al. Blockade of the Wnt/β-catenin pathway attenuates bleomycin-induced pulmonary fibrosis. Tohoku J Exp Med. 2011;223(1):45–54. doi:10.1620/tjem.223.45.
  • Smirnova N, Schamberger A, Nayakanti S, Hatz R, Behr J, Eickelberg O. Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respir Res. 2016;17(1):83. doi:10.1186/s12931-016-0404-x.
  • Kobayashi Y, Tata A, Konkimalla A, et al. Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis. Nat Cell Biol. 2020;22(8):934–946. doi:10.1038/s41556-020-0542-8.
  • Ota C, Ng-Blichfeldt J, Korfei M, et al. Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Sci Rep. 2018;8(1):12983. doi:10.1038/s41598-018-31214-x.
  • Reyfman P, Walter J, Joshi N, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199(12):1517–1536. doi:10.1164/rccm.201712-2410OC.