93
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effects of fulvic acid on rice growth and phosphorus absorption

, , , , &
Pages 1408-1417 | Received 22 Dec 2022, Accepted 09 Jan 2024, Published online: 02 Feb 2024

References

  • Ai, P. H., S. B. Sun, J. N. Zhao, X. R. Fan, W. J. Xin, Q. Guo, L. Yu, Q. R. Shen, P. Wu, A. J. Miller, et al. 2009. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant Journal: For Cell and Molecular Biology 57 (5):798–809. doi: 10.1111/j.1365-313X.2008.03726.x.
  • Canellas, L. P., F. L. Olivares, N. O. Aguiar, D. L. Jones, A. Nebbioso, P. Mazzei, and A. Piccolo. 2015. Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae 196:15–27. doi: 10.1016/j.scienta.2015.09.013.
  • Cordell, D., J. O. Drangert, and S. White. 2009. The story of phosphorus: Global food security and food for thought. Global Environmental Change 19 (2):292–305. doi: 10.1016/j.gloenvcha.2008.10.009.
  • Dinler, B. S., E. Gunduzer, and T. Tekinay. 2016. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress. Acta Biologica Cracoviensias. Botanica 58 (1):29–41. doi: 10.1515/abcsb-2016-0002.
  • Dong, L. H., Q. Yuan, and H. L. Yuan. 2006. Changes of chemical properties of humic acids from crude and fungal transformed lignite. Fuel 85 (17–18):2402–7. doi: 10.1016/j.fuel.2006.05.027.
  • Gomez, K. A., and A. A. Gomez. 1976. Statistical procedures for agricultural research, with emphasis on rice. Los Banos: International Rice Research Institute. doi: 10.2307/2530400.
  • Gong, G. Q., X. Yuan, Y. J. Zhang, Y. J. Li, W. X. Liu, M. Wang, Y. F. Zhao, and L. W. Xu. 2020. Characterization of coal-based fulvic acid and the construction of a fulvic acid molecular model. RSC Advances 10 (9):5468–77. doi: 10.1039/C9RA09907G.
  • Jarošová, M., B. Klejdus, J. Kováčik, P. Babula, and J. Hedbavny. 2016. Humic acid protects barley against salinity. Acta Physiologiae Plantarum 38 (6):1–9. doi: 10.1007/s11738-016-2181-z.
  • Jia, H. F., H. Y. Ren, M. Gu, J. N. Zhao, S. B. Sun, X. Zhang, J. Y. Chen, P. Wu, and G. H. Xu. 2011. The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiology 156 (3):1164–75. doi: 10.1104/pp.111.175240.
  • Kapoore, R. V., E. E. Wood, and C. A. Llewellyn. 2021. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances 49:107754. doi: 10.1016/j.biotechadv.2021.107754.
  • Kaya, C., M. Şenbayram, N. A. Akram, M. Ashraf, M. N. Alyemeni, and P. Ahmad. 2020. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports 10 (1):6432. doi: 10.1038/s41598-020-62669-6.
  • Kirkby, E. A., and A. E. Johnston. 2008. Soil and fertilizer phosphorus in relation to crop nutrition. White P J H. The ecophysiology of plant -phosphorus interactions. Dordrecht: Springer Netherlands, 177–223. https://link.springer.com/chapter/10.1007/978-1-4020-8435-5_9.
  • Li, J., L. Yuan, B. Q. Zhao, Y. T. Li, Y. C. Wen, W. Li, and Z. A. Lin. 2017. Effect of adding humic acid to phosphorous fertilizer on maize yield and phosphorus uptake and soil available phosphorus content. Plant Nutrition and Fertilizer Science 23:641–8. https://en.cnki.com.cn/Article_en/CJFDTotal-ZWYF201703010.htm.
  • Li, L., S. M. Li, J. H. Sun, L. L. Zhou, X. G. Bao, H. G. Zhang, and F. S. Zhang. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America 104 (27):11192–6. doi: 10.1073/pnas.0704591104.
  • Li, Z., Z. Lin, B. Zhao, L. Yuan, Y. Li, and Y. Wen. 2013. Effects of value-added phosphate fertilizers on transformation of inorganic phosphorus in calcareous soils. Journal of Plant Nutrition and Fertilizers 19:1183–91. (In Chinese). doi: 10.11674/zwyf.2013.0518.
  • López-Arredondo, D. L., M. A. Leyva-González, S. I. González-Morales, J. López-Bucio, and L. Herrera-Estrella. 2014. Phosphate nutrition: Improving low-phosphate tolerance in crops. Annual Review of Plant Biology 65 (1):95–123. doi: 10.1146/annurev-arplant-050213-035949.
  • Ma, M. K., L. Yuan, Y. T. Li, Q. Gao, and B. Q. Zhao. 2019. The effect of sulfonated humus acid phosphate fertilizer on enhancing grain yield and phosphorus uptake and utilization in winter wheat. Plant Nutrition and Fertilizer Science 25:362–9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201903003.htm.
  • Ma, X. D., and S. A. Green. 2008. Fractionation and spectroscopic properties of fulvic acid and its extract. Chemosphere 72 (10):1425–34. doi: 10.1016/j.chemosphere.2008.05.029.
  • Nardi, S., D. Pizzeghello, A. Muscolo, and A. Vianello. 2002. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry 34 (11):1527–36. doi: 10.1016/S0038-0717(02)00174-8.
  • Olaetxea, M., De Hita, D., C. A. Garcia, M. Fuentes, R. Baigorri, V. Mora, M. Garnica, O. Urrutia, J. Erro, A. M Zamarreño, et al. 2018. Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root-and shoot-growth. Applied Soil Ecology 123:521–37. doi: 10.1016/j.apsoil.2017.06.007.
  • Shen, Y. W., Z. Ma, H. N. Chen, H. T. Lin, G. D. Li, M. L. Li, D. S. Tan, W. S. Gao, S. Y. Jiao, P. Liu, et al. 2023. Effects of macromolecular organic acids on reducing inorganic phosphorus fixation in soil. Heliyon 9 (4):e14892. doi: 10.1016/j.heliyon.2023.e14892.
  • Sun, S. B., M. Gu, Y. Cao, X. P. Huang, X. Zhang, P. H. Ai, J. N. Zhao, X. R. Fan, and G. H. Xu. 2012. A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiology 159 (4):1571–81. doi: 10.1104/pp.112.196345.
  • Tran, H. T., B. A. Hurley, and W. C. Plaxton. 2010. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition. Plant Science 179 (1–2):14–27. doi: 10.1016/j.plantsci.2010.04.005.
  • Vance, C. P., C. Uhde‐Stone, and D. L. Allan. 2003. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157 (3):423–47. doi: 10.1046/j.1469-8137.2003.00695.x.
  • Wang, Y. M., R. X. Yang, J. Y. Zheng, Z. Shen, and X. Xu. 2019. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicology and Environmental Safety 167:10–9. doi: 10.1016/j.ecoenv.2018.08.064.
  • Xu, D. D., Y. Z. Deng, P. G. Xi, G. Yu, Q. Wang, Q. Q. Zeng, Z. D. Jiang, and L. W. Gao. 2019. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry 286:226–33. doi: 10.1016/j.foodchem.2019.02.015.
  • Xu, F., Y. X. Zhao, F. Wang, D. L. Guo, Y. L. Wei, and X. Z. Huang. 2013. Cloning of a vacuolar H+-pryophosphatase gene from emphemeral plants Olimarabidopsis pumila whose overexpression improve salt tolerance in tobacco. African Journal of Biotechnology 12:6817–25. doi: 10.5897/AJB2013.13272.
  • Yamaji, N., J. X. Xia, N. Mitani-Ueno, K. Yokosho, and J. F. Ma. 2013. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology 162 (2):927–39. doi: 10.1104/pp.113.216564.
  • Yang, M., M. Y. Geng, P. F. Shen, X. H. Chen, Y. J. Li, and X. X. Wen. 2019. Effect of post-silking drought stress on the expression profiles of genes involved in carbon and nitrogen metabolism during leaf senescence in maize (Zea mays L.). Plant Physiology and Biochemistry: PPB 135:304–9. doi: 10.1016/j.plaphy.2018.12.025.
  • Yuan, Y., S. Gai, C. Y. Tang, Y. X. Jin, K. Cheng, M. Antonietti, and F. Yang. 2022. Artificial humic acid improves maize growth and soil phosphorus utilization efficiency. Applied Soil Ecology 179:104587. doi: 10.1016/j.apsoil.2022.104587.
  • Zhang, F., Y. F. Sun, W. X. Pei, A. Jain, R. Sun, Y. Cao, X. N. Wu, T. T. Jiang, L. Zhang, X. R. Fan, et al. 2015. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice. Plant Journal: For Cell and Molecular Biology 82 (4):556–69. doi: 10.1111/tpj.12804.
  • Zhao, B. Q., L. Yuan, Y. T. Li, and S. Q. Zhang. 2020. Overview of value-added fertilizer. Beijing: China Agricultural Science and Technology Press. https://fertilizerpricing.com/value-added-fertilizer-2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.