69
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Responses of growth, yield and chemical composition of tomato to phosphorus nutrition under different saline environments

, , &
Pages 1390-1407 | Received 24 Feb 2022, Accepted 08 Jan 2024, Published online: 24 Jan 2024

References

  • AOAC. 1990. Association of official, chemists, official methods of analysis (15th Edition). Washington, DC: AOAC.
  • Abbas, G., Y. Chen, F. Y. Khan, Y. Feng, J. A. Palta, and K. H. M. Siddique. 2018. Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy 8 (8):155. doi: 10.3390/agronomy8080155.
  • Abid, M., F. Ahmad, N. Ahmad, and I. Ahmad. 2002. Effect of phosphorus on growth, yield, and mineral composition of wheat in different textured saline sodic soils. Asian Journal of Plant Sciences 1 (4):472–5. doi: 10.3923/ajps.2002.472.475.
  • Akbarimoghaddam, H., M. Galavi, A. Ghanbari, and N. Panjehkeh. 2011. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences 9 (1):43–50.
  • Al-Karaki, G. N. 1997. Barley response to salt stress at varied phosphorus. Journal of Plant Nutrition 20:1635–43.
  • Ashraf, M. 2010. Registration of ‘S-24’ spring wheat with improved salt tolerance. Journal of Plant Registrations 4 (1):34–7. doi: 10.3198/jpr2008.05.0252crc.
  • Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances 27 (1):84–93. doi: 10.1016/j.biotechadv.2008.09.003.
  • Athar, H. R., and M. Ashraf. 2009. Strategies for crop improvement against salt and water stress: An overview. In Salinity and water stress: Improving crop efficiency, ed. M. Ashraf, M. Ozturk, and H. R. Athar, 1–16. Dordrecht, the Netherlands: Springer
  • Baker, N. R., and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany 55 (403):1607–21. doi: 10.1093/jxb/erh196.
  • Balouchi, H. R. 2010. Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. International Journal of Biology and Life Sciences 6:56–66.
  • Bano, A., and M. Fatima. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils 45 (4):405–13. doi: 10.1007/s00374-008-0344-9.
  • Bargaz, A., R. M. A. Nassar, M. M. Rady, M. S. Gaballah, S. M. Thompson, M. Brestic, U. Schmidhalter, and M. T. Abdelhamid. 2016. Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P‐efficiency. Journal of Agronomy and Crop Science 202 (6):497–507. doi: 10.1111/jac.12181.
  • Billah, M., M. M. Rohman, N. Hossain, and M. Shalim Uddin. 2017. Exogenous ascorbic acid improved tolerance in maize (Zea mays L.) by increasing antioxidant activity under salinity stress. African Journal of Agricultural Research 12 (17):1437–46. doi: 10.5897/AJAR2017.12295.
  • Bilski, J. J., D. C. Nelson, and R. L. Conlon. 1988. Response of six wild potato species to chloride and sulfate salinity. American Potato Journal 65 (10):605–12. doi: 10.1007/BF02908345.
  • Carillo, P., G. Mastrolonardo, F. Nacca, and A. Fuggi. 2005. Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology: FPB 32 (3):209–19. doi: 10.1071/FP04184.
  • Chauhan, C. P. S., R. B. Singh, P. S. Minhas, A. K. Agnihotri, and R. K. Gupta. 1991. Response of wheat to irrigation with saline water varying in anionic constituents and phosphorus application. Agricultural Water Management 20 (3):223–31. doi: 10.1016/0378-3774(91)90019-F.
  • Chen, T. H., and N. Murata. 2011. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant, Cell & Environment 34 (1):1–20. doi: 10.1111/j.1365-3040.2010.02232.x.
  • Cheng, K. L., and R. H. Bray. 1951. Determination of calcium and magnesium in soil and plant material. Soil Science 72 (6):449–58. doi: 10.1097/00010694-195112000-00005.
  • Chesnin, L., and C. H. Yien. 1950. Turbidimetric determination of available sulphates. Soil Science Society of America Journal 15 (C):149–51. doi: 10.2136/sssaj1951.036159950015000C0032x.
  • Chhabra, R. 1973. Kinetics of absorption of chloride and phosphorus, their interaction and effect on growth and composition of tomato plant., Ph.D. Thesis., KUL, Belgium.
  • Chinnusamy, V., J. Zhu, and J. K. Zhu. 2006. Salt stress signalling and mechanisms of plant salt tolerance. Genetic Engineering 27:141–77. doi: 10.1007/0-387-25856-6_9.
  • Cuartero, J., and R. Fernández-Muñoz. 1999. Tomato and salinity. Scientia Horticulturae 78 (1-4):83–125. doi: 10.1016/S0304-4238(98)00191-5.
  • Datta, K. S., A. Kumar, S. K. Varma, and R. Angrish. 1995. Differentiation of chloride and sulphate salinity on the basis of ionic distribution in genetically diverse cultivars of wheat. Journal of Plant Nutrition 18 (10):2199–212. doi: 10.1080/01904169509365056.
  • Del Amor, F. M., V. Martinez, and A. Cerda. 2001. Salt tolerance of tomato plants as affected by stage of plant development. HortScience 36 (7):1260–3. doi: 10.21273/HORTSCI.36.7.1260.
  • Dorais, M., D. L. Ehret, and A. P. Papadopoulos. 2008. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews 7 (2):231–50. doi: 10.1007/s11101-007-9085-x.
  • El-Fouly, M. M., Z. M. Mobarak, and Z. A. Salama. 2011. Micronutrients (Fe, Mn, Zn) foliar spray for increasing salinity tolerance in wheat (Triticum aestivum L.). African Journal of Plant Science 5 (5):314–22.
  • Elgharably, A. G. 2008. Nutrient availability and wheat growth as affected by plant residues and inorganic fertilizers in saline soils., (Doctoral dissertation).,
  • Epstein, E., and A. J. Bloom. 2005. Nutrition of plants: Principles and perspectives. 2nd ed. Sunderland, MA: Sinauer.
  • Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress. Annals of Botany 104 (7):1263–80. doi: 10.1093/aob/mcp251.
  • FAO. 2008. Land and plant nutrition management service. Rome, Italy: Food and Agriculture Organization of the United Nations. http://www.fao.org/agb/agl/agll/spush/
  • Fekri, M., L. Gharanjig, and A. Soliemanzadeh. 2015. Responses of growth and chemical composition of pistachio seedling to phosphorus fertilization under saline conditions. Journal of Plant Nutrition 38 (12):1836–48. doi: 10.1080/01904167.2015.1043375.
  • Frechilla, S., B. Lasa, L. Ibarretxe, C. Lamsfus, and P. Aparicio-Tejo. 2001. Pea response to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation 35 (2):171–9. doi: 10.1023/A:1014487908495.
  • Gao, Y., D. Li, and Y. Chen. 2012. Differentiation of carbonate, chloride, and sulfate salinity responses in tall fescue. Scientia Horticulturae 139:1–7. doi: 10.1016/j.scienta.2012.02.035.
  • Gianquinto, G., A. Abu-Rayyan, L. Di Tola, D. Piccotino, and B. Pezzarossa. 2000. Interaction effects of phosphorus and zinc on photosynthesis, growth and yield of dwarf bean grown in two environments. Plant and Soil 220 (1/2):219–28. doi: 10.1023/A:1004705008101.
  • Grattan, S. R., and E. V. Maas. 1988. Effect of salinity on phosphate accumulation and injury in soybean. I. influence of CaCl2/NaCl Ratios. Plant and Soil 105 (1):25–32. doi: 10.1007/BF02371139.
  • Gulmezoglu, N., and H. Daghan. 2017. The interactive effects of phosphorus and salt on growth, water potential and phosphorus uptake in green beans. Applied Ecology and Environmental Research 15 (3):1831–42. doi: 10.15666/aeer/1503_18311842.
  • Güneş, A., A. İnal, M. Alpaslan, and Y. Çikili. 1999. Effect of salinity on phosphorus induced zinc deficiency in pepper (Capsicum annum L.) Plants. Turkish Journal of Agriculture and Forestry 23 (4):459–64.
  • He, G., J. Zhang, X. Hu, and J. Wu. 2011. Effect of aluminum toxicity and phosphorus deficiency on the growth and photosynthesis of oil tea (Camellia oleifera Abel.) seedlings in acidic red soils. Acta Physiologiae Plantarum 33 (4):1285–92. doi: 10.1007/s11738-010-0659-7.
  • Hiscox, J. D., and G. F. Israelstam. 1979. A method of extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12):1332–4. doi: 10.1139/b79-163.
  • Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168 (4):541–9. doi: 10.1002/jpln.200420516.
  • Hussein, M. M., A. A. Abdel-Kader, K. A. Kady, R. A. Youssef, and A. K. Alva. 2010. Sorghum response to foliar application of phosphorus and potassium with saline water irrigation. Journal of Crop Improvement 24 (4):324–36. doi: 10.1080/15427528.2010.499042.
  • Irakoze, W., B. Vanpee, G. Rufyikiri, H. Dailly, S. Nijimbere, and S. Lutts. 2019. Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage. Journal of Plant Nutrition 42 (9):1001–15. doi: 10.1080/01904167.2019.1584222.
  • Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall of India Private Ltd, New Delhi
  • Jamil, M., S. Rehman, and E. S. Rha. 2007. Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Pakistan Journal of Botany 39 (3):753–60.
  • Jamil, A., S. Riaz, M. Ashraf, and M. R. Foolad. 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences 30 (5):435–58. doi: 10.1080/07352689.2011.605739.
  • Johnston, A. E., and I. Steén. 2000. Understanding phosphorus and its use in agriculture. European Fertilizer Manufacturers ‘Association. https://fertiliser-society.org/wp-content/uploads/2019/11/EFMA-Phosphorus-booklet-2000.pdf
  • Kachout, S., A. B. Mansoura, K. Jaffel, J. C. Leclerc, M. N. Rejeb, and Z. Ouerghi. 2009. The effect of salinity on the growth of the halophyte Atriplex hortensis (Chenopodiaceae). Applied Ecology and Environmental Research 7 (4):319–32.
  • Katerji, N., M. Mastrorilli, J. W. Van Hoorn, F. Z. Lahmer, A. Hamdy, and T. Oweis. 2009. Durum wheat and barley productivity in saline–drought environments. European Journal of Agronomy 31 (1):1–9. doi: 10.1016/j.eja.2009.01.003.
  • Kaya, C., D. Higgs, and E. Sakar. 2002. Response of two leafy vegetables grown at high salinity to supplementary potassium and phosphorus during different growth stages. Journal of Plant Nutrition 25 (12):2663–76. doi: 10.1081/PLN-120015530.
  • Kaya, C., H. Kirnak, and D. Higgs. 2001a. Enhancement of growth and normal growth parameters by foliar application of potassium and phosphorus in tomato cultivars grown at high (NaCl) salinity. Journal of Plant Nutrition 24 (2):357–67. doi: 10.1081/PLN-100001394.
  • Kaya, C., H. Kirnak, and D. Higgs. 2001b. Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). Journal of Plant Nutrition 24 (9):1457–71. doi: 10.1081/PLN-100106995.
  • Khosh Kholgh Sima, N. A., H. Askari, H. H. Mirzaei, and M. Pessarakli. 2009. Genotype-dependent differential responses of three forage species to Ca supplement in saline conditions. Journal of Plant Nutrition 32 (4):579–97. doi: 10.1080/01904160802714979.
  • Khosh Kholgh Sima, N. A., S. Tale Ahmad, R. A. Alitabar, A. Mottaghi, and M. Pessarakli. 2012. Interactive effects of salinity and phosphorus nutrition on physiological responses of two barley species. Journal of Plant Nutrition 35 (9):1411–28. doi: 10.1080/01904167.2012.684132.
  • Kim, S. G., S. Y. Kim, and C. M. Park. 2007. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226 (3):647–54. doi: 10.1007/s00425-007-0513-3.
  • Koenig, R. A., and C. R. Johnson. 1942. Colorimetric determination of P in biological materials. Industrial & Engineering Chemistry Analytical Edition 14 (2):155–6. doi: 10.1021/i560102a026.
  • Kolář, J., and J. Seňková. 2008. Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. Journal of Plant Physiology 165 (15):1601–9. doi: 10.1016/j.jplph.2007.11.010.
  • Kumar, N. 1992. Phosphorus soil salinity interaction and its effect on the grwoth of wheat and sorghum under two soil moisture regimes., (Doctoral dissertation., College of Agriculture Chaudhary Charan Singh Haryana Agricultural University Hisar).
  • Knudsen, D., G. A. Peterson, and P. F. Pratt. 1983. Lithium, sodium, and potassium. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties 9:225–46.
  • de Lacerda, C. F., J. Cambraia, M. A. Oliva, H. A. Ruiz, and J. T. Prisco. 2003. Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany 49 (2):107–20. doi: 10.1016/S0098-8472(02)00064-3.
  • Li, T. Y., Y. Zhang, H. Liu, Y. Wu, W. Li, and H. Zhang. 2010. Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1, and salt tolerance in transgenic soybean for over six generations. Chinese Science Bulletin 55 (12):1127–34. doi: 10.1007/s11434-010-0092-8.
  • Lindner, R. C. 1944. Rapid analytical method for some of the more common inorganic constituents of plant tissues. Plant Physiology 19 (1):76–89. doi: 10.1104/pp.19.1.76.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Lu, J., M. T. Charles, C. Vigneault, B. A. Goyette, and G. S. V. Raghavan. 2010. Effect of heat treatment uniformity on tomato ripening and chilling injury. Postharvest Biology and Technology 56 (2):155–62. doi: 10.1016/j.postharvbio.2010.01.005.
  • Madueño‐Molina, A., J. D. García‐Paredes, J. Martínez‐Hernández, R. Bugarín Montoya, and J. I. Bojórquez‐Serrano. 2008. Induced salinity and supplementary phosphorus on growth and mineral content of frijolillo. Communications in Soil Science and Plant Analysis 39 (9-10):1447–59. doi: 10.1080/00103620802004243.
  • Malik, R. S. 1994. Influence of phosphorus and sulphur on the performance of sunflower and pea in saline soils., Ph.d. Thesis., CCS Haryana Agricultural University, Hisar.
  • Manchanda, H. R., S. K. Sharma, and D. K. Bhandari. 1982. Response of barley and wheat to phosphorus in the presence of chloride and sulphate salinity. Plant and Soil 66 (2):233–41. doi: 10.1007/BF02183982.
  • Metwally, S. M., M. A. Kamis, and A. B. Gaballah. 2004. Zinc-phosphorus interrelation effects on productivity of three maize hybrids in zinc-and phosphorus-deficient soils. Journal of Product Development 9:259–77.
  • Mittler, R., and E. Blumwald. 2010. Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology 61 (1):443–62. doi: 10.1146/annurev-arplant-042809-112116.
  • Miyazaki, Y., Y. Maruyama, Y. Chiba, M. J. Kobayashi, B. Joseph, K. K. Shimizu, K. Mochida, T. Hiura, H. Kon, and A. Satake. 2014. Nitrogen as a key regulator of flowering in Fagus crenata: Understanding the physiological mechanism of masting by gene expression analysis. Ecology Letters 17 (10):1299–309. doi: 10.1111/ele.12338.
  • Mohammad, M., R. Shibli, M. Ajlouni, and L. Nimri. 1998. Tomato root and shoot response to salt stress under different levels of phosphorus nutrition. Journal of Plant Nutrition 21 (8):1667–80. doi: 10.1080/01904169809365512.
  • Munns, R., R. A. James, and A. Läuchli. 2006. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany 57 (5):1025–43. doi: 10.1093/jxb/erj100.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59 (1):651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Murat, A. T., V. Katkat, and T. Suleyman. 2007. Variations in proline, chlorophyll and mineral elements contents of wheat plants grown under salinity stress. Journal of Agronomy 6 (1):137–41. doi: 10.3923/ja.2007.137.141.
  • Naheed, G., M. Shahbaz, N. A. Akram, and M. Ashraf. 2008. Interactive effect of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryza sativa L.). Pakistan Journal of Botany 40 (4):1601–8.
  • Navarro, J. M., C. Garrido, M. Carvajal, and V. Martinez. 2002. Yield and fruit quality of pepper plants under sulphate and chloride salinity. The Journal of Horticultural Science and Biotechnology 77 (1):52–7. doi: 10.1080/14620316.2002.11511456.
  • Nawaz, H., M. Zubair, and H. Derawadan. 2012. Interactive effects of nitrogen, phosphorus and zinc on growth and yield of tomato (Solanum lycopersicum). African Journal of Agricultural Research 7 (26):3792–9.
  • Netondo, G. W., J. C. Onyango, and E. Beck. 2004. Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science 44 (3):806–11. doi: 10.2135/cropsci2004.0806.
  • Olaniyi, J. O., W. B. Akanbi, T. A. Adejumo, and O. G. Akande. 2010. Growth, fruit yield and nutritional quality of tomato varieties. African Journal of Food Science, 4 (6):398–402.
  • Olsen, S. R., C. V. Cole, F. S. Watanabe, and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.C.
  • Panse, V. G., and P. V. Sukhatme. 1995. Statistical methods for agricultural workers. ICAR, New Delhi. 359.
  • Parida, A. K., and A. B. Das. 2005. Salt tolerance and salinity effect on plants: A review. Ecotoxicology and Environmental Safety 60 (3):324–49. doi: 10.1016/j.ecoenv.2004.06.010.
  • Parmar, V. K., K. I. Joshi, A. D. Patel, M. C. Johi, and V. M. Patel. 2005. Yield and quality of tomato under different salinity levels. Bioinfolet 10 (3B):1008–9.
  • Pinheiro, H. A., J. V. Silva, L. Endres, V. M. Ferreira, C. d A. Câmara, F. F. Cabral, J. F. Oliveira, L. W. T. d Carvalho, J. M. d Santos, and B. G. d S. Filho. 2008. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Industrial Crops and Products 27 (3):385–92. doi: 10.1016/j.indcrop.2007.10.003.
  • Piper, C. S. 1950. Soil and Plant Analysis. Academic Press, newYork.
  • Rafat, M., and P. Sharifi. 2015. The effect of phosphorus on yield and yield components of green bean. Journal of Soil Nature 8 (1):9–13.
  • Rais, L., A. Masood, A. Inam, and N. Khan. 2013. Sulfur and nitrogen coordinately improve photosynthetic efficiency, growth and proline accumulation in two cultivars of mustard under salfaot stress. Journal of Plant Biochemistry & Physiology 1 (1):101. doi: 10.4172/2329-9029.1000101.
  • Deepika, Rathi, R.S., Antil, Manoj Kumar, Sharma, Sunita, Sheoran, Devraj,. (2020). Effect of FYM and gypsum on distribution of micronutrient in soil under sodic water irrigation: A long-term study.Journal of the Indian Society of Soil Science, 68(1), 100–106. doi: 10.5958/0974-0228.2020.00011.0.
  • Reich, M., T. Aghajanzadeh, J. Helm, S. Parmar, M. J. Hawkesford, and L. J. De Kok. 2017. Chloride and sulfate salinity differently affect biomass, mineral nutrient composition and expression of sulfate transport and assimilation genes in Brassica rapa. Plant and Soil 411 (1):319–32. doi: 10.1007/s11104-016-3026-7.
  • Reitemeter, R. F. 1943. Semi microanalysis of saline soil solution. Induststrial and Engineering Chemical Analytical 15:393–402.
  • Rengasamy, P. 2006. World salinization with emphasis on Australia. Journal of Experimental Botany 57 (5):1017–23. doi: 10.1093/jxb/erj108.
  • Sá, F. V. D. S., H. R. Gheyi, G. S. D. Lima, E. P. D. Paiva, R. C. Moreira, and L. D. A. Silva. 2018. Water salinity, nitrogen and phosphorus on photochemical efficiency and growth of west indian cherry. Revista Brasileira de Engenharia Agrícola e Ambiental 22 (3):158–63. doi: 10.1590/1807-1929/agriambi.v22n3p158-163.
  • Sadji-Ait Kaci, H., A. Chaker-Haddadj, and F. Aid. 2018. Enhancing of symbiotic efficiency and salinity tolerance of chickpea by phosphorus supply. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 68 (6):534–40. doi: 10.1080/09064710.2018.1440001.
  • Sahoo, S. S., S. K. Sharma, A. S. Nandwal, A. K. Kapoor, N. Kumar, S. S. Dahiya, and S. Kukreja. 2005. Phosphorus Nutrition influences plant water status, mineral distribution, dry matter and yield of marigold under saline environments. Journal of Plant Biology 32 (3):189–98.
  • Savic, S., F. Liu, R. Stikic, S. E. Jacobsen, C. R. Jensen, and Z. Jovanovic. 2009. Comparative effects of partial root zone drying and deficit irrigation on growth and physiology of tomato plants. Archives of Biological Sciences 61 (4):801–10. doi: 10.2298/ABS0904801S.
  • Scalfi, L., V. Fogliano, A. Pentangelo, G. Graziani, I. Giordano, and A. Ritieni. 2000. Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. Journal of Agricultural and Food Chemistry 48 (4):1363–6. doi: 10.1021/jf990883h.
  • Segura, M. L., J. I. Contreras, R. Salinas, and M. T. Lao. 2009. Influence of Salinity and Fertilization Level on Greenhouse Tomato Yield and Quality. Communications in Soil Science and Plant Analysis 40 (1-6):485–97. doi: 10.1080/00103620802697764.
  • Shabala, S. N., and R. R. Lew. 2002. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiology 129 (1):290–9. doi: 10.1104/pp.020005.
  • Shahriaripour, R., A. Tajabadi Pour, and V. Mozaffari. 2011. Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Communications in Soil Science and Plant Analysis 42 (2):144–58. doi: 10.1080/00103624.2011.535065.
  • Sharma, D. K., P. Dey, S. K. Gupta, and P. C. Sharma. 2014. CSSRI Vision 2050. Central Soil Salinity Research Institute, Karnal.
  • Sharma, S. K., H. R. Manchanda, and A. K. Kapoor. 2007. Phosphorus requirement of wheat under chloride and sulphate dominated salinities. Journal of the Indian Society of Soil Science 55 (4):509–14.
  • Sheoran, O. P., D. S. Tonk, L. S. Kaushik, R. C. Hasija, and R. S. Pannu. 1998. Statistical Software Package for Agricultural Research Workers.
  • Shrivastava, P., and R. Kumar. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences 22 (2):123–31. doi: 10.1016/j.sjbs.2014.12.001.
  • Singh, G. 2009. Salinity-related desertification and management strategies: Indian experience. Land Degradation & Development 20 (4):367–85. doi: 10.1002/ldr.933.
  • Singh, K. N. and Chatrath, R. 2001. Salinity Tolerance. In Application of Physiology in Wheat Breeding, edited by Reynolds, M.P., Monasterio, J.I.O., McNab, A., 101-10. Mexico, DF: CIMMYT. https://repository.cimmyt.org/xmlui/bitstream/handle/10883/1248/74619.pdf?sequence=1
  • Soil Survey Staff. 1998. Keys to Soil Taxonomy, 8th Ed. Washington, DC: United State Department of Agriculture-Natural Resources Conservation Services. https://www.nrcs.usda.gov/resources/guides-and-instructions/keys-to-soil-taxonomy
  • Tabatabaei, S. J. 2006. Effect of salinity and non growth, photosynthesis, and N status of olive (Olea europaea L.) trees. Scientia Horticulturae 108 (4):432–8. doi: 10.1016/j.scienta.2006.02.016.
  • Talbi Zribi, O., C. Abdelly, and A. Debez. 2011. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Plant Biology (Stuttgart, Germany) 13 (6):872–80. doi: 10.1111/j.1438-8677.2011.00450.x.
  • Tang, H., L. Niu, J. Wei, X. Chen, and Y. Chen. 2019. Phosphorus limitation improved salt tolerance in maize through tissue mass density increase, osmolytes accumulation, and Na+ uptake inhibition. Frontiers in Plant Science 10:856. doi: 10.3389/fpls.2019.00856.
  • Tang, Y., X. Wen, Q. Lu, Z. Yang, Z. Cheng, and C. Lu. 2007. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiology 143 (2):629–38. doi: 10.1104/pp.106.090712.
  • Tavallali, V., M. Rahemi, M. Maftoun, B. Panahi, S. Karimi, A. Ramezanian, and M. Vaezpour. 2009. Zinc influence and salt stress on photosynthesis, water relations, and carbonic anhydrase activity in pistachio. Scientia Horticulturae 123 (2):272–9. doi: 10.1016/j.scienta.2009.09.006.
  • Tunçturk, M., R. Tunçturk, and F. Yasar. 2008. Changes in micronutrients, dryweight and plant growth of soybean (Glycine max L. Merill) cultivars under salt stress. African Journal of Biotechnology 7 (11):1650–4.
  • Tuteja, N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419–38. doi: 10.1016/S0076-6879(07)28024-3.
  • Vaz, J., and P. K. Sharma. 2011. Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian Journal of Experimental Biology 49 (1):60–7.
  • Wada, K. C., and K. Takeno. 2010. Stress-induced flowering. Plant Signaling & Behavior 5 (8):944–7. doi: 10.4161/psb.5.8.11826.
  • Wagdi, E. M., M. M. Shawky, M. K. Matar, and N. N. Yousef. 2013. Effect of phosphorus in alleviation of adverse impacts of salinity on wheat grown on different soils. Communications in Soil Science and Plant Analysis 44 (13):1921–36. doi: 10.1080/00103624.2013.795227.
  • Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Zlatev, Z. 2009. Drought-induced changes in chlorophyll fluorescence of young wheat plants. Biotechnology & Biotechnological Equipment 23 (sup1):438–41. doi: 10.1080/13102818.2009.10818458.
  • Zou, Y. N., Q. S. Wu, Y. M. Huang, Q. D. Ni, and X. H. He. 2013. Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PloS One 8 (11):e80568. doi: 10.1371/journal.pone.0080568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.