57
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Nitrogen use efficiency and yield components of rice as influenced by reducing nitrogen application under salinity conditions in a pot experiment

, , , , &
Pages 1438-1455 | Received 24 Jun 2022, Accepted 09 Jan 2024, Published online: 24 Jan 2024

References

  • Abdelgadir, E. M., M. Oka, and H. Fujiyama. 2005a. Nitrogen nutrition of rice plants under salinity. Biologia Plantarum 49 (1):99–104. doi: 10.1007/s10535-005-0104-8.
  • Abdelgadir, E. M., M. Oka, and H. Fujiyama. 2005b. Characteristics of nitrate uptake by plants under salinity. Journal of Plant Nutrition 28 (1):33–46. doi: 10.1081/PLN-200042156.
  • Chen, Y., Y. Liu, J. Ge, R. Li, R. Zhang, Y. Zhang, Z. Huo, K. Xu, H. Wei, and Q. Dai. 2022. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. Frontiers in Plant Science 13:982637. doi: 10.3389/fpls.2022.982637.
  • Cheng, J., H. Jiang, Y. Liu, T. Dai, and W. Cao. 2011. Methods on identification and screening of rice genotypes with high nitrogen efficiency. Rice Science 18 (2):127–35. doi: 10.1016/S1672-6308(11)60018-8.
  • Dionisio-Sese, M. L., and Tobita, S. 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135:1–9. doi: 10.1016/S0168-9452(98)00025-9.
  • Eckstein, D., M.-L. Hutfils, and M. Winges. 2018. Global climate risk index 2019. Who suffers most from extreme weather events? Weather-Related Loss Events in 2017 and 1998 to 2017.
  • Gaihre, Y. K., U. Singh, S. M. M. Islam, A. Huda, M. R. Islam, M. A. Satter, J. Sanabria, M. Islam, and A. L. Shah. 2015. Impacts of urea deep placement on nitrous oxide and nitric oxide emissions from rice fields in Bangladesh. Geoderma 259-260:370–9. doi: 10.1016/j.geoderma.2015.06.001.
  • Giuliani, S., L. G. Bellucci, and D. H. Nhon. 2019. The coast of Vietnam: Present status and future challenges for sustainable development. In C.B.T.-W.S. an E.E. (Second E. Sheppard (Ed.), World Seas: An Environmental Evaluation, 415–35. Elsevier. doi: 10.1016/B978-0-08-100853-9.00027-0
  • Guo, X., Y. Lan, L. Xu, D. Yin, H. Li, Y. Qian, G. Zheng, and Y. Lü. 2021. Effects of nitrogen application rate and hill density on rice yield and nitrogen utilization in sodic saline–alkaline paddy fields. Journal of Integrative Agriculture 20 (2):540–53. doi: 10.1016/S2095-3119(20)63479-7.
  • Hamaoka, N., T. Araki, E. Kumagai, H. Tang, P. Cuong, and O. Ueno. 2012. Photosynthetic traits of upper three leaves in the Vietnamese F-1 hybrid rice Vietlai 45 and its parents during the ripening period. Journal of the Faculty of Agriculture, Kyushu University 57 (1):27–33. doi: 10.5109/22044.
  • Hanh, T. T., T. Araki, P. V. Cuong, T. Mochizuki, A. Yoshimura, and F. Kubota. 2008. Characteristics of CO2 exchange rate of flag leaves in a Vietnamese hybrid rice variety and its parents during grain filling stage. Tropical Agriculture and Development 52:104–10. doi: 10.11248/jsta.52.104.
  • Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168 (4):541–9. doi: 10.1002/jpln.200420516.
  • Huang, L., X. Liu, Z. Wang, Z. Liang, M. Wang, M. Liu, and D. L. Suarez. 2017. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L.). Agricultural Water Management 194:48–57. doi: 10.1016/j.agwat.2017.08.012.
  • IFA. 2019. IFASTAT. https://www.ifastat.org/databases/plant-nutrition (accessed September 20, 2019).
  • Irakoze, W., B. Vanpee, G. Rufyikiri, H. Dailly, S. Nijimbere, and S. Lutts. 2019. Comparative effects of chloride and sulfate salinities on two contrasting rice cultivars (Oryza sativa L.) at the seedling stage. Journal of Plant Nutrition 42 (9):1001–15. doi: 10.1080/01904167.2019.1584222.
  • Islam, S. M. M., Y. K. Gaihre, M. Islam, M. Akter, A. Al Mahmud, U. Singh, and B. O. Sander. 2020. Effects of water management on greenhouse gas emissions from farmers’ rice fields in Bangladesh. The Science of the Total Environment 734:139382. doi: 10.1016/j.scitotenv.2020.139382.
  • Jagadish, S. V. K., P. Q. Craufurd, and T. R. Wheeler. 2007. High temperature stress and spikelet fertility in rice (Oryza sativa L.). Journal of Experimental Botany 58 (7):1627–35. doi: 10.1093/jxb/erm003.
  • Khalil, M. A. K., R. A. Rasmussen, M. X. Wang, and L. Ren. 1991. Methane emissions from rice fields in China. Environmental Science & Technology 25 (5):979–81. doi: 10.1021/es00017a023.
  • Ladha, J. K., H. Pathak, J. Krupnik T, J. Six, and C. van Kessel. 2005. B.T.-A. in A. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy, 85–156. Academic Press. doi: 10.1016/S0065-2113(05)87003-8
  • Laza, M., S. Peng, S. Akita, and H. Saka. 2004. Effect of panicle size on grain yield of IRRI-released indica rice cultivars in the wet season. Plant Production Science 7 (3):271–6. doi: 10.1626/pps.7.271.
  • Li, B., C. H. Fan, H. Zhang, Z. Z. Chen, L. Y. Sun, and Z. Q. Xiong. 2015. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmospheric Environment 100:10–9. doi: 10.1016/j.atmosenv.2014.10.034.
  • Lutts, S., J. M. Kinet, and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany 78 (3):389–98. doi: 10.1006/anbo.1996.0134.
  • Mahapatra, P., D. Panda, and S. Mohanty. 1990. Efficiency of urea-based fertilizers for wetland rice (Oryza sativa). The Journal of Agricultural Science 114 (2):187–91. doi: 10.1017/S002185960007218X.
  • Morton, L. W., N. K. Nguyen, and M. S. Demyan. 2023. Salinity and acid sulfate soils of the Vietnam Mekong Delta: Agricultural management and adaptation. Journal of Soil and Water Conservation 78 (4):85A–92A. doi: 10.2489/jswc.2023.0321A.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59 (1):651–81. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Murtaza, G., M. M. Azooz, B. Murtaza, Y. Usman, and M. Saqib. 2013. Nitrogen-use-efficiency (NUE) in plants under NaCl stress. In P. Ahmad, M.M. Azooz & M.N.V. Prasad (Eds.), Salt stress in plants, 415–37. New York, NY: Springer. doi: 10.1007/978-1-4614-6108-1_16
  • Nguyen, H. T. T., C. V. Pham, and P. Bertin. 2014. The effect of nitrogen concentration on nitrogen use efficiency and related parameters in cultivated rices (Oryza sativa L. subsp. indica and japonica and O. glaberrima Steud.) in hydroponics. Euphytica 198 (1):137–51. doi: 10.1007/s10681-014-1101-9.
  • Nguyen, H. H., V. C. Pham, T. H. Tang, and V. H. Nguyen. 2019. Response of promising rice CSSL IAS66 and its parents under different nitrogen levels. Journal of ISSAAS (International Society for Southeast Asian Agricultural Sciences) 25:1–10.
  • Phan, N. T. H., A. Heymans, M. Bonnave, S. Lutts, C. V. Pham, and P. Bertin. 2023. Nitrogen use efficiency of rice cultivars (Oryza sativa L.) under salt stress and low nitrogen conditions. Journal of Plant Growth Regulation 42 (3):1789–803. doi: 10.1007/s00344-022-10660-y.
  • Phan, T. H. N., T. H. Tang, P. Bertin, and V. C. Pham. 2017. Effect of inorganic nitrogen forms and concentration on growth of rice genotypes under severe saline condition. Vietnam Journal of Agriculture Science 15:189–97.
  • R Development Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
  • Qiao, J., L. Yang, T. Yan, F. Xue, and D. Zhao. 2012. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agriculture, Ecosystems & Environment 146 (1):103–12. doi: 10.1016/j.agee.2011.10.014.
  • Sandhu, N., M. Sethi, A. Kumar, D. Dang, J. Singh, and P. Chhuneja. 2021. Biochemical and genetic approaches improving nitrogen use efficiency in cereal crops: A Review. Frontiers in Plant Science 12:657629. doi: 10.3389/fpls.2021.657629.
  • Smajgl, A., T. Q. Toan, D. K. Nhan, J. Ward, N. H. Trung, L. Q. Tri, V. P. D. Tri, and P. T. Vu. 2015. Responding to rising sea levels in the Mekong Delta. Nature Climate Change 5 (2):167–74. doi: 10.1038/nclimate2469.
  • Song, X., G. Zhou, B.-L. Ma, W. Wu, I. Ahmad, G. Zhu, W. Yan, and X. Jiao. 2019. Nitrogen application improved photosynthetic productivity, chlorophyll fluorescence, yield and yield components of two oat genotypes under saline conditions. Agronomy 9 (3):115. doi: 10.3390/agronomy9030115.
  • Sun, L., J. Deng, C. Fan, J. Li, and Y. Liu. 2020. Combined effects of nitrogen fertilizer and biochar on greenhouse gas emissions and net ecosystem economic budget from a coastal saline rice field in southeastern China. Environmental Science and Pollution Research International 27 (14):17013–22. doi: 10.1007/s11356-020-08204-6.
  • Wang, H., M. Zhang, R. Guo, D. Shi, B. Liu, X. Lin, and C. Yang. 2012. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biology 12 (1):194. doi: 10.1186/1471-2229-12-194.
  • Wassmann, R., N. D. Phong, T. Q. Tho, C. T. Hoanh, N. H. Khoi, N. X. Hien, T. B. T. Vo, and T. P. Tuong. 2019. High-resolution mapping of flood and salinity risks for rice production in the Vietnamese Mekong Delta. Field Crops Research 236:111–20. doi: 10.1016/j.fcr.2019.03.007.
  • Wu, S., Z. Zhang, H. Sun, and H. Hu. 2023. Responses of rice yield, N uptake, NH3 and N2O losses from reclaimed saline soils to varied N inputs. Plants (Basel, Switzerland) 12 (13):2446. doi: 10.3390/plants12132446.
  • Xu, C., Q. Li, X. Liu, H. Wang, and F. Ling. 2019. Effects of nitrogen supply level on photosynthesis and chlorophyll fluorescence characteristics of rice under salt stress. Emirates Journal of Food and Agriculture 31 (10): 741–5. doi: 10.9755/ejfa.2019.v31.i10.2014.
  • Zhang, D., W. Li, C. Xin, W. Tang, A. E. Eneji, and H. Dong. 2012. Lint yield and nitrogen use efficiency of field-grown cotton vary with soil salinity and nitrogen application rate. Field Crops Research 138:63–70. doi: 10.1016/j.fcr.2012.09.013.
  • Zhang, R., Y. Wang, S. Hussain, S. Yang, R. Li, S. Liu, Y. Chen, H. Wei, Q. Dai, and H. Hou. 2022. Study on the effect of salt stress on yield and grain quality among different rice varieties. Frontiers in Plant Science 13:918460. doi: 10.3389/fpls.2022.918460.
  • Zheng, C., G. Zhou, Z. Zhang, W. Li, Y. Peng, and X. Xie. 2020. Moderate salinity stress reduces rice grain yield by influencing expression of grain number- and grain filling-associated genes. Journal of Plant Growth Regulation 40 (3):1111–20. doi: 10.1007/s00344-020-10168-3.
  • Zhou, W., F. Yan, Y. Chen, and W. Ren. 2022. Optimized nitrogen application increases rice yield by improving the quality of tillers. Plant Production Science 25 (3):311–9. doi: 10.1080/1343943X.2022.2061538.
  • Zhu, G., Y. Wang, X. Shi, H. Lu, Z. Ren, Y. Shi, X. Jiao, M. E. H. Ibrahim, A. Irshad, W. Zhu, et al. 2020. Optimum nitrogen management enhances growth, antioxidant ability and yield performance of rice in saline soil of coastal area of China. Chilean Journal of Agricultural Research 80 (4):629–39. doi: 10.4067/S0718-58392020000400629.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.