71
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of the time-dependent presence and residual effects of nanohydroxyapatite and diammonium phosphate in a barley-barley-maize-maize cropping system

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1513-1526 | Received 03 Aug 2023, Accepted 25 Jan 2024, Published online: 14 Feb 2024

References

  • Alewell, C., B. Ringeval, C. Ballabio, D. A. Robinson, P. Panagos, and P. Borrelli. 2020. Global phosphorus shortage will be aggravated by soil erosion. Nature Communications 11 (1):4546. doi: 10.1038/s41467-020-18326-7.
  • Baligar, V. C., N. K. Fageria, and Z. L. He. 2001. Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis 32 (7-8):921–50. doi: 10.1081/CSS-100104098.
  • Bargaz, A., G. L. Noyce, R. Fulthorpe, G. Carlsson, J. R. Furze, E. S. Jensen, D. Dhiba, and M. E. Isaac. 2017. Species interactions enhance root allocation, microbial diversity and P acquisition in intercropped wheat and soybean under P deficiency. Applied Soil Ecology 120:179–88. doi: 10.1016/j.apsoil.2017.08.011.
  • Barton, C. J. 1948. Determination of phosphorus as molybdovanadophosphoric acid. Analytical Chemistry 20 (11):1068–73. doi: 10.1021/ac60023a024.
  • Betencourt, E., M. Duputel, B. Colomb, D. Desclaux, and P. Hinsinger. 2012. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology and Biochemistry 46:181–90. doi: 10.1016/j.soilbio.2011.11.015.
  • Bindraban, P. S., C. O. Dimkpa, and R. Pandey. 2020. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biology and Fertility of Soils 56 (3):299–317. doi: 10.1007/s00374-019-01430-2.
  • Blackwell, M. S. A., T. Darch, and R. P. Haslam. 2019. Phosphorus use efficiency and fertilizers: Future opportunities for improvements. Frontiers of Agricultural Science and Engineering 6 (4):332–40. doi: 10.15302/J-FASE-2019274.
  • Chhipa, H., and P. Joshi. 2016. Nanofertilisers, nanopesticides and nanosensors in agriculture. In Nanoscience in food and agriculture 1, sustainable agriculture reviews, eds., S. Ranjan, N. Dasgupta, and E. Lichtfouse, 247–82. New York: Springer International Publishing, Cham. doi: 10.1007/978-3-319-39303-2_9.
  • Dai, Z., G. Liu, H. Chen, C. Chen, J. Wang, S. Ai, D. Wei, D. Li, B. Ma, C. Tang, et al. 2020. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal 14 (3):757–70. doi: 10.1038/s41396-019-0567-9.
  • Drostkar, E., R. Talebi, and H. Kanouni. 2016. Foliar application of Fe, Zn and NPK nanofertilizers on seed yield and morphological traits in chickpea under rainfed condition. Journal of Resources and Ecology 4:221–8.
  • El-Desouky, H. S., K. R. Islam, B. Bergefurd, G. Gao, T. Harker, H. Abd-El-Dayem, F. Ismail, M. Mady, and R. M. Y. Zewail. 2021. Nano iron fertilization significantly increases tomato yield by increasing plants’ vegetable growth and photosynthetic efficiency. Journal of Plant Nutrition 44:1–15. doi: 10.1080/01904167.2021.1871749.
  • Elsayed, A. A., E. G. Ahmed, Z. K. Taha, H. M. Farag, M. S. Hussein, and K. AbouAitah. 2022. Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Scientia Horticulturae 295:110851. doi: 10.1016/j.scienta.2021.110851.
  • Gao, S., T. H. DeLuca, and C. C. Cleveland. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. The Science of the Total Environment 654:463–72. doi: 10.1016/j.scitotenv.2018.11.124.
  • Gunes, A., E. G. Bagci, and A. Inal. 2007. Interspecific facilitative root interactions and rhizosphere effects on phosphorus and iron nutrition between mixed grown chickpea and barley. Journal of Plant Nutrition 30 (9):1455–69. doi: 10.1080/01904160701555648.
  • Gunes, A., A. Inal, M. Alpaslan, and I. Cakmak. 2006. Genotypic variation in phosphorus efficiency between wheat cultivars grown under greenhouse and field conditions. Soil Science and Plant Nutrition 52 (4):470–8. doi: 10.1111/j.1747-0765.2006.00068.x.
  • Gunes, A., A. Inal, and Y. K. Kadioglu. 2009. Determination of mineral element concentrations in wheat, sunflower, chickpea and lentil cultivars in response to P fertilization by polarized energy dispersive X‐ray fluorescence. X‐Ray Spectrometry: An International Journal 38 (5):451–62. doi: 10.1002/xrs.1186.
  • Kheyri, N., H. A. Norouzi, H. R. Mobasser, and B. Torabi. 2019. Effects of silicon and zinc nanoparticles on growth, yield, and biochemical characteristics of rice. Agronomy Journal 111 (6):3084–90. doi: 10.2134/agronj2019.04.0304.
  • Kolahchi, Z., and M. Jalali. 2013. Phosphorus movement and retention by two calcareous soils. Soil and Sediment Contamination: An International Journal 22 (1):21–38. doi: 10.1080/15320383.2012.697939.
  • Kottegoda, N., I. Munaweera, N. Madusanka, and V. Karunaratne. 2011. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science :73–8. https://www.jstor.org/stable/24077865.
  • Lang, C., E. G. Mission, A. A. H. A. Fuaad, and M. Shaalan. 2021. Nanoparticle tools to improve and advance precision practices in the Agrifoods Sector towards sustainability-A review. Journal of Cleaner Production 293:126063. doi: 10.1016/j.jclepro.2021.126063.
  • Lin, M., P. Liu, L. Jun, W. Zhou, and J. Yuan. 2021. Phosphorus bioavailability and migration of hydroxyapatite in different sizes as phosphorus fertilizer in camellia oleifera seedlings. HortScience 56 (9):1112–8. doi: 10.21273/HORTSCI16038-21.
  • Liu, R., and R. Lal. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports 4 (1):5686. doi: 10.1038/srep05686.
  • Liu, R., and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. The Science of the Total Environment 514:131–9. doi: 10.1016/j.scitotenv.2015.01.104.
  • Maghsoodi, M. R., L. Ghodszad, and B. A. Lajayer. 2020. Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: potentials, challenges and effects on plants. Environmental Technology & Innovation 19:100869. doi: 10.1016/j.eti.2020.100869.
  • McKnight, M. M., Z. Qu, J. K. Copeland, D. S. Guttman, and V. K. Walker. 2020. A practical assessment of nano-phosphate on soybean (Glycine max) growth and microbiome establishment. Scientific Reports 10 (1):9151. doi: 10.1038/s41598-020-66005-w.
  • Mikhak, A., A. Sohrabi, M. Z. Kassaee, and M. Feizian. 2017. Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Industrial Crops and Products 95:444–52. doi: 10.1016/j.indcrop.2016.10.054.
  • Mogollón, J. M., A. H. W. Beusen, H. J. M. van Grinsven, H. Westhoek, and A. F. Bouwman. 2018. Future agricultural phosphorus demand according to the shared socioeconomic pathways. Global Environmental Change 50:149–63. doi: 10.1016/j.gloenvcha.2018.03.007.
  • Montalvo, D., M. J. McLaughlin, and F. Degryse. 2015. Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in andisols and oxisols. Soil Science Society of America Journal 79 (2):551–8. doi: 10.2136/sssaj2014.09.0373.
  • Morales-Díaz, A. B., H. Ortega-Ortíz, A. Juárez-Maldonado, G. Cadenas-Pliego, S. González-Morales, and A. Benavides-Mendoza. 2017. Application of nanoelements in plant nutrition and its impact in ecosystems. Advances in Natural Sciences: Nanoscience and Nanotechnology 8 (1):013001. doi: 10.1088/2043-6254/8/1/013001.
  • Olsen, S. R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). Washington: US Department of Agriculture.
  • Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. In Methods of Soil Analysis, edited by A. L. Page. R. H. Miller, and D. R. Keeney, 2nd ed, pp. 403–430. Agronomy Series No. 9, Part 2. Madison, WI: Soil Science Society of America, Inc.
  • Page, A. L., and D. R. Keeney. 1982. Methods of soil analysis. Madison, WI: American Society of Agronomy.
  • Ramírez-Estrada, C. A., E. Sánchez, M. A. Flores-Cordova, C. Chávez-Mendoza, E. Muñoz-Márquez, A. Palacio-Márquez, and K. I. Hernández-Fıgueroa. 2022. Efficiency and assimilation of nitrogen in bean plants through foliar application of zinc and molybdenum nano fertilizer. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 50 (2):12719– doi: 10.15835/nbha50212719.
  • Ranjbar, S., M. Rahemi, and A. Ramezanian. 2018. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Scientia Horticulturae 240:57–64. doi: 10.1016/j.scienta.2018.05.035.
  • Roberts, T. L., and A. E. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling 105:275–81. doi: 10.1016/j.resconrec-09.0130921-3449.
  • Sadat-Shojai, M., M. T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi. 2013. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomaterialia 9 (8):7591–621. doi: 10.1016/j.actbio.2013.04.012.
  • Sajadinia, H., D. Ghazanfari, K. Naghavii, H. Naghavi, and B. Tahamipur. 2021. A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon 7 (3):e06094. doi: 10.1016/j.heliyon.2021.e06094.
  • Samavini, R., C. Sandaruwan, M. De Silva, G. Priyadarshana, N. Kottegoda, and V. Karunaratne. 2018. Effect of citric acid surface modification on solubility of hydroxyapatite nanoparticles. Journal of Agricultural and Food Chemistry 66 (13):3330–7. doi: 10.1021/acs.jafc.7b05544.
  • Sharma, P., A. Gautam, V. Kumar, and P. Guleria. 2021. In vitro exposed magnesium oxide nanoparticles enhanced the growth of legume Macrotyloma uniflorum. Environmental Science and Pollution Research İnternational 29 (9):13635–45. doi: 10.1007/s11356-021-16828-5.
  • Shukla, A. K., S. K. Behera, A. Pakhre, and S. K. Chaudhari. 2018. Micronutrients in soils, plants, animals and humans. Indian Journal of Fertilisers 14 (3):30–54.
  • Syers, J. K., A. E. Johnston, and D. Curtin. 2008. Efficiency of soil and fertilizer phosphorus use. FAO Fertilizer And Plant Nutrition Bulletin 18 (108):5–50.
  • Tang, S., and X. Fei. 2021. Refractory calcium phosphate-derived phosphorus fertilizer based on hydroxyapatite nanoparticles for nutrient delivery. ACS Applied Nano Materials 4 (2):1364–76. doi: 10.1021/acsanm.0c02921?ref = pdf.
  • Taşkın, M. B., Ö. Şahin, H. Taskin, O. Atakol, A. Inal, and A. Gunes. 2018. Effect of synthetic nano-hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of lettuce (Lactuca sativa L.) plant. Journal of Plant Nutrition 41 (9):1148–54. doi: 10.1080/01904167.2018.1433836.
  • Tesfaye, F., X. Liu, J. Zheng, K. Cheng, R. Bian, X. Zhang, L. Li, M. Drosos, S. Joseph, and G. Pan. 2021. Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments. Environmental Science and Pollution Research İnternational 28 (26):34108–20. doi: 10.1007/s11356-021-14119-7.
  • Thavaseelan, D., and G. Priyadarshana. 2021. Nanofertilizer use for sustainable agriculture. Journal of Research Technology & Engineering 2 (1):41–59.
  • Tian, D., Z. Li, D. O'Connor, and Z. Shen. 2020. The need to prioritize sustainable phosphate-based fertilizers. Soil Use and Management 36 (3):351–4. doi: 10.1111/sum.12578.
  • Weyers, E., D. G. Strawn, D. Peak, A. D. Moore, L. L. Baker, and B. Cade-Menun. 2016. Phosphorus speciation in calcareous soils following annual dairy manure amendments. Soil Science Society of America Journal 80 (6):1531–42. doi: 10.2136/sssaj2016.09.0280.
  • Xiang, Y., Y. Liu, M. Gong, Y. Tong, Y. Liu, G. Zhao, and J. Yang. 2023. Preparation of novel biodegradable polymer slow-release fertilizers to ımprove nutrient release performance and soil phosphorus availability. Polymers 15 (10):2242. doi: 10.3390/polym15102242.
  • Xiong, L., P. Wang, and P. M. Kopittke. 2018. Tailoring hydroxyapatite nanoparticles to increase their efficiencyas phosphorus fertilisers in soils. Geoderma 323:116–25. doi: 10.1016/j.geoderma.2018.03.002.
  • Yadav, R. S., S. C. Meena, S. I. Patel, K. I. Patel, M. S. Akhtar, B. K. Yadav, and J. Panwar. 2012. Bioavailability of soil P for plant nutrition. In Farming for food and water security. Sustainable agriculture reviews, ed. E. Lichtfouse, Vol. 10, 177–200. doi: 10.1007/978-94-007-4500-1_8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.