41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Cationic micronutrient fractions in some tropical Alfisols and Inceptisols as affected by organic amendments and simulated moisture regimes: an incubation study

, ORCID Icon &
Pages 1527-1545 | Received 17 Feb 2021, Accepted 25 Jan 2024, Published online: 05 Mar 2024

References

  • Acharjee, P. U., K. Bhattacharyya, R. Poddar, A. Pari, K. Ray, S. K. Patra, and S. Halder. 2021. Water management and varietal selection approach in mitigation of arsenic in inceptisols of West Bengal, India. Communications in Soil Science and Plant Analysis 52 (9):1008–22. doi: 10.1080/00103624.2021.1872600.
  • Ajmone-Marsan, F., E. Padoan, F. Madrid, B. Vrščaj, M. Biasioli, and C. M. Davidson. 2019. Metal release under anaerobic conditions of urban soils of four European cities. Water, Air, & Soil Pollution 230 (3):1–16. doi: 10.1007/s11270-019-4101-5.
  • Akter, M., H. Deroo, E. De Grave, T. Van Alboom, M. A. Kader, S. Pierreux, M. A. Begum, P. Boeckx, and S. Sleutel. 2018. Link between paddy soil mineral nitrogen release and iron and manganese reduction examined in a rice pot growth experiment. Geoderma 326:9–21. doi: 10.1016/j.geoderma.2018.04.002.
  • Allen, J., and B. O. Sander. 2019. The diverse benefits of alternate wetting and drying (AWD). Los Baños, Philippines: International Rice Research Institute (IRRI). www.ccafs.cgiar.org.
  • Annisa, W., and D. Nursyamsi. 2017. Iron dynamics and its relation to soil redox potential and plant growth in acid sulphate soil of South Kalimantan, Indonesia. Indonesian Journal of Agricultural Science 17 (1):1–8. doi: 10.21082/ijas.v17n1.2016.p1-8.
  • Bakircioglu, D., Y. B. Kurtulus, and H. İbar. 2011. Comparison of extraction procedures for assessing soil metal bioavailability of to wheat grains. CLEAN – Soil, Air, Water 39 (8):728–34. doi: 10.1002/clen.201000501.
  • Barati, M. K., V. S. Manivasagam, M. R. Nikoo, P. Saravanane, A. Narayanan, and S. Manalil. 2022. Rainfall Variability and Rice Sustainability: An Evaluation Study of Two Distinct Rice-Growing Ecosystems. Land 11 (8):1242. doi: 10.3390/land11081242.
  • Behera, P. R., D. Jegadeeswari, and T. Chitdeshwari. 2018. Effect of Moisture Regimes and Amendments on Iron Transformation in Acid Soils. Madras Agricultural Journal 105(7-9):276–81. doi: 10.29321/MAJ.2018.000145.
  • Beygi, M., and M. Jalali. 2019. Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337:1009–20. doi: 10.1016/j.geoderma.2018.11.009.
  • Bhattacharya, P., S. Sengupta, and S. Halder. 2019. Customized, fortified and nano enabled fertilizers-prioritizing and profiteering sustainability in agriculture. Advances in Agriculture Sciences 19:69–97.
  • Bhattacharyya, K., and S. Sengupta. 2020. Arsenic management options in soil-plant-food chain. Proceedings-cum-Abstract Book National Webinar on Arsenic, 17.
  • Bhattacharyya, K., S. Sengupta, A. Pari, S. Halder, P. Bhattacharya, B. J. Pandian, and A. R. Chinchmalatpure. 2021. Characterization and risk assessment of arsenic contamination in soil–plant (vegetable) system and its mitigation through water harvesting and organic amendment. Environmental Geochemistry and Health 43 (8):2819–34. doi: 10.1007/s10653-020-00796-9.
  • Bolan, N. S., D. C. Adriano, and D. Curtin. 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy 78 (21):5–272.
  • Borch, T., R. Kretzschmar, A. Kappler, P. V. Cappellen, M. Ginder-Vogel, A. Voegelin, and K. Campbell. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology 44 (1):15–23. doi: 10.1021/es9026248.
  • Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54 (5):464–5. doi: 10.2134/agronj1962.00021962005400050028x.
  • Bowden, C., T. Foster, and B. Parkes. 2023. Identifying links between monsoon variability and rice production in India through machine learning. Scientific Reports 13 (1):2446. doi: 10.1038/s41598-023-27752-8.
  • Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science. 59 (1):39–46. doi: 10.1097/00010694-194501000-00006.
  • Burton, E. D., D. W. Hawker, and M. R. Redding. 2003. Sludge-derived Cu and Zn in a humic-gley soil: Effect of dissolved metal-organic matter complexes on sorption and partitioning. Soil and Sediment Contamination: An International Journal 12 (1):23–46. doi: 10.1080/713610959.
  • Cakmak, I., P. Brown, J. M. Colmenero-Flores, S. Husted, B. Y. Kutman, M. Nikolic, Z. Rengel, S. B. Schmidt, and F. J. Zhao. 2023. Micronutrients. In Marschner’s mineral nutrition of plants, 283–385. Cambridge, MA: Academic Press.
  • Chen, Y., J. Cui, X. Tian, A. Zhao, M. Li, S. Wang, X. Li, Z. Jia, and K. Liu. 2017. Effect of straw amendment on soil Zn availability and ageing of exogenous water-soluble Zn applied to calcareous soil. PloS One 12 (1):e0169776. doi: 10.1371/journal.pone.0169776.
  • Dasgupta, S., S. Sengupta, S. Saha, N. Saha, K. Bhattacharyya, and P. Dey. 2021. Predicting the response of soil potassium to broccoli (Brassica oleracea var. italica) in a Gangetic Inceptisol of West Bengal, India through suitable chemical extractants. Journal of Plant Nutrition 44 (7):931–45. doi: 10.1080/01904167.2020.1867580.
  • Datta, A., H. Ullah, and Z. Ferdous. 2017. Water management in rice. Rice Production Worldwide, 255–77. https://doi.org/10.1007/978-3-319-47516-5_11
  • Datta, S. P., M. C. Meena, M. Barman, D. Golui, R. Mishra, and A. K. Shukla. 2018. Soil tests for micronutrients: current status and future thrust. Indian Journal of Fertilisers 14 (5):32–51.
  • Depar, N., I. Rajpar, M. Y. Memon, and M. Imtiaz. 2011. Mineral nutrient densities in some domestic and exotic rice genotypes. Pakistan Journal of Agriculture: Agricultural Engineering Veterinary Sciences (Pakistan) 27:134–42.
  • Dhaliwal, S. S., R. K. Naresh, A. Mandal, R. Singh, and M. K. Dhaliwal. 2019. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators 1-2:100007. doi: 10.1016/j.indic.2019.100007.
  • Fageria, N. K., G. D. Carvalho, A. B. Santos, E. P. B. Ferreira, and A. M. Knupp. 2011. Chemistry of lowland rice soils and nutrient availability. Communications in Soil Science and Plant Analysis 42 (16):1913–33. doi: 10.1080/00103624.2011.591467.
  • Frohne, T., J. Rinklebe, and R. A. Diaz-Bone. 2014. Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal 23 (7):779–99. doi: 10.1080/15320383.2014.872597.
  • Golui, D., M. Barman, S. P. Datta, and A. K. Shukla. 2017. Fractionation of micronutrients and metals in soil. In Manual on advance techniques for analysis of nutrients and pollutant elements in soil, plant and human eds. S. P. Datta, M. C. Meena, B. S. Dwivedi and A. K. Shukla. New Delhi: Westville Publishing House.
  • Gonzaga, M. I. S., M. I. D. A. S. Matias, K. R. Andrade, A. N. de Jesus, G. da Costa Cunha, R. S. de Andrade, and J. C. de Jesus Santos. 2020. Aged biochar changed copper availability and distribution among soil fractions and influenced corn seed germination in a copper-contaminated soil. Chemosphere 240:124828. doi: 10.1016/j.chemosphere.2019.124828.
  • Hasegawa, H., M. A. Al Mamun, Y. Tsukagoshi, K. Ishii, H. Sawai, Z. A. Begum, M. S. Asami, T. Maki, and I. M. Rahman. 2019. Chelator-assisted washing for the extraction of lead, copper, and zinc from contaminated soils: A remediation approach. Applied Geochemistry 109:104397. doi: 10.1016/j.apgeochem.2019.104397.
  • Horváth, Z., E. Michéli, A. Mindszenty, and J. Berényi-Üveges. 2005. Soft-sediment deformation structures in Late Miocene–Pleistocene sediments on the pediment of the Mátra Hills (Visonta, Atkár, Verseg): Cryoturbation, load structures or seismites? Tectonophysics 410 (1–4):81–95. doi: 10.1016/j.tecto.2005.08.012.
  • Husson, O. 2012. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil 362 (1–2):389–417. doi: 10.1007/s11104-012-1429-7.
  • Jackson, M. L. 1967. Soil chemical analysis. New Delhi: Prentice Hall.
  • Jackson, M. L. 1973. Soil chemical analysis. Prentice Hall.
  • Jiang, Y., Y. G. Zhang, D. Zhou, Y. Qin, and W. J. Liang. 2009. Profile distribution of micronutrients in an aquic brown soil as affected by land use. Plant, Soil and Environment 55 (11):468–76. doi: 10.17221/57/2009-PSE.
  • Jośko, I. 2019. Copper and zinc fractionation in soils treated with CuO and ZnO nanoparticles: The effect of soil type and moisture content. The Science of the Total Environment 653:822–32. doi: 10.1016/j.scitotenv.2018.11.014.
  • Karak, T., U. K. Singh, and J. Lai. 2005. Influences of starch and Zn-EDTA on Zn-desorption and rice (Oryza sativa L.) nutrition under different moisture regimes. Archives of Agronomy and Soil Science 51 (3):265–80. doi: 10.1080/03650340500044661.
  • Karan, A. K., S. Kar, V. K. Singh, and C. V. Singh. 2014. Effects of liming and soil moisture regimes on time changes of soil pH, redox potential, availability of native sulfur and micronutrients to rice (Oryza sativa L.) in acid soils. International Journal of Soil Science 9 (1):1–15. doi: 10.3923/ijss.2014.1.15.
  • Karczewska, A., A. Mocek, P. Goliński, and M. Mleczek. 2015. Phytoremediation of copper-contaminated soil. Phytoremediation: Management of Environmental Contaminants 2:143–70. volume
  • Kaur, R., B. Singh, and S. S. Dhaliwal. 2020. Dynamics of soil cationic micronutrients in a chronosequence of poplar (Populus deltoides Bartr.)-based agroforestry system in India. Journal of Soil Science and Plant Nutrition 20 (4):2025–41. doi: 10.1007/s42729-020-00272-4.
  • Kirk, G. 2004. The biogeochemistry of submerged soils. Chichester: John Wiley & Sons.
  • Knudsen, D., G. A. Peterson, and P. F. Pratt. 1983. Lithium, sodium, and potassium. In Methods of soil analysis, ed. A. L. Page.
  • Li, M., P. Wang, F. Dang, and D. M. Zhou. 2017. The transformation and fate of silver nanoparticles in paddy soil: Effects of soil organic matter and redox conditions. Environmental Science: Nano 4 (4):919–28. doi: 10.1039/C6EN00682E.
  • Li, S., S. Chen, M. Wang, X. Lei, H. Zheng, X. Sun, L. Wang, and Y. Han. 2020. Iron fractions responsible for the variation of Cd bioavailability in paddy soil under variable pe + pH conditions. Chemosphere 251:126355. doi: 10.1016/j.chemosphere.2020.126355.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Luo, X., L. Yu, C. Wang, X. Yin, A. Mosa, J. Lv, and H. Sun. 2017. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere 169:609–17. doi: 10.1016/j.chemosphere.2016.11.105.
  • Maity, S., S. K. Sahu, and G. G. Pandit. 2017. Trace metals distribution and their dependence on some physico-chemical parameters in creek sediment. Toxicological & Environmental Chemistry 99 (2):209–22. doi: 10.1080/02772248.2016.1176170.
  • Mandal, J., S. Sengupta, S. Sarkar, A. Mukherjee, M. D. Wood, S. M. Hutchinson, and D. Mondal. 2021. Meta-analysis enables prediction of the maximum permissible arsenic concentration in Asian paddy soil. Frontiers in Environmental Science 9: 1–13. doi: 10.3389/fenvs.2021.760125.
  • Mandal, L. N., and B. Mandal. 1987. Transformation of zinc fractions in rice soils. Soil Science 143 (3):205–12. doi: 10.1097/00010694-198703000-00007.
  • Mandal, L. N., and R. R. Mitra. 1982. Transformation of iron and manganese in rice soils under different moisture regimes and organic matter applications. Plant and Soil 69 (1):45–56. doi: 10.1007/BF02185702.
  • Maqueda, C., E. Morillo, R. Lopez, T. Undabeytia, and F. Cabrera. 2015. Influence of organic amendments on Fe, Cu, Mn, and Zn availability and clay minerals of different soils. Archives of Agronomy and Soil Science 61 (5):599–613. doi: 10.1080/03650340.2014.946409.
  • Marschner, P. 2021. Processes in submerged soils–linking redox potential, soil organic matter turnover and plants to nutrient cycling. Plant and Soil 464 (1-2):1–12. doi: 10.1007/s11104-021-05040-6.
  • Masunaga, T., and J. D. M. Fong. 2018. Strategies for increasing micronutrient availability in soil for plant uptake. In Plant micronutrient use efficiency, 195–208. Cambridge, MA: Academic Press.
  • McKeague, J. A., and J. H. Day. 1966. Dithionite-and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Canadian Journal of Soil Science 46 (1):13–22. doi: 10.4141/cjss66-003.
  • Miller, W. P., D. C. Martens, and L. W. Zelazny. 1986. Effect of sequence in extraction of trace metals from soils. Soil Science Society of America Journal 50 (3):598–601. doi: 10.2136/sssaj1986.03615995005000030011x.
  • Mohanty, S., and R. M. Karmakar. 2018. Forms of iron in clay fraction of paddy and associated non-paddy soils of Assam. Journal of Pharmacognosy and Phytochemistry 7 (6):2677–82.
  • Nadeem, F., and M. Farooq. 2019. Application of micronutrients in rice-wheat cropping system of south Asia. Rice Science 26 (6):356–71. doi: 10.1016/j.rsci.2019.02.002.
  • Naik, S. K., and D. K. Das. 2007. Effect of lime, humic acid and moisture regime on the availability of zinc in alfisol. TheScientificWorldJournal 7:1198–206. doi: 10.1100/tsw.2007.192.
  • Olsen, S. R., and L. E. Sommers. 1965. Phosphorus methods of soil analysis. Part 2. Chemical and microbiological properties, 403–30. ASA, Inc. SSSA, Inc.
  • Orasen, G., P. De Nisi, G. Lucchini, A. Abruzzese, M. Pesenti, M. Maghrebi, A. Kumar, F. F. Nocito, E. Baldoni, S. Morgutti, et al. 2019. Continuous flooding or alternate wetting and drying differently affect the accumulation of health-promoting phytochemicals and minerals in rice brown grain. Agronomy 9 (10):628. doi: 10.3390/agronomy9100628.
  • Patra, S. K., and S. Sengupta. 2022. Effect of gravity-fed drip irrigation and nitrogen management on flowering quality, yield, water and nutrient dynamics of gladiolus in an Indian inceptisol. Journal of Plant Nutrition 45 (13):2049–67. doi: 10.1080/01904167.2022.2057327.
  • Phillips, I., and L. Chappie. 1995. Assessment of a heavy metals‐contaminated site using sequential extraction, TCLP, and risk assessment techniques. Journal of Soil Contamination 4 (4):311–25. doi: 10.1080/15320389509383503.
  • Rajini, S. R., K. Narayana Rao, and K. S. Bharath Kumar. 2018. Distribution of zinc forms in paddy soils of upper Krishna project command area of north Karnataka. In Compendium of Abstracts of the 2nd International Conference on Bio-Resource and Stress Management. ANGRAU & PJTSAU, Hyderabad (7–10.
  • Ramos, M. L., C. H. Moscuzza, and A. F. Cirelli. 2020. Total Content and Availability of Micronutrients in Soils and Livestock Manure. RevistaInternacional de Contaminación Ambiental 36 (1):115–26.
  • Rehman, H. U., T. Aziz, M. Farooq, A. Wakeel, and Z. Rengel. 2012. Zinc nutrition in rice production systems: A review. Plant and Soil 361 (1-2):203–26. doi: 10.1007/s11104-012-1346-9.
  • Richardson, J. B., C. L. Petrenko, and A. J. Friedland. 2017. Base cations and micronutrients in forest soils along three clear-cut chronosequences in the northeastern United States. Nutrient Cycling in Agroecosystems 109 (2):161–79. doi: 10.1007/s10705-017-9876-4.
  • Saha, J. K., and B. Mandal. 2000. Redistribution of copper in alfisols under submergence. II. Applied copper. Communications in Soil Science and Plant Analysis 31 (9-10):1121–7. doi: 10.1080/00103620009370501.
  • Saha, S., B. Saha, T. Seth, S. Dasgupta, M. Ray, B. Pal, S. Pati, S. K. Mukhopadhyay, and G. Hazra. 2019. Micronutrients availability in soil–plant system in response to long-term integrated nutrient management under rice–wheat cropping system. Journal of Soil Science and Plant Nutrition 19 (4):712–24. doi: 10.1007/s42729-019-00071-6.
  • Samiei, M., and A. Bostani. 2016. Manganese fractionation in soils after application of municipal solid wastes compost in two consecutive years. Applied and Environmental Soil Science 2016:1–8. doi: 10.1155/2016/5202789.
  • Sengupta, S., and S. Dey. 2019. Universal multi-nutrient extractants in soil analysis-Scope & Prospects. Agric Food 1 (11):406–10.
  • Sengupta, S., P. Bhattacharya, and S. Hazra. 2019. Ensuring nutritional security through zinc biofortification of rice grain in Indian scenario: A review. IJCS 7 (6):2129–44.
  • Sengupta, S., K. Bhattacharyya, J. Mandal, P. Bhattacharya, S. Halder, and A. Pari. 2021. Deficit irrigation and organic amendments can reduce dietary arsenic risk from rice: Introducing machine learning-based prediction models from field data. Agriculture, Ecosystems & Environment 319:107516. doi: 10.1016/j.agee.2021.107516.
  • Sengupta, S., K. Bhattacharyya, J. Mandal, P. Bhattacharya, and A. P. Chattopadhyay. 2023. Zinc and iron enrichment of vermicompost can reduce the arsenic load in rice grain: An investigation through pot and field experiments. Journal of Cleaner Production 419:138267. doi: 10.1016/j.jclepro.2023.138267.
  • Shambhavi, S., R. Padbhushan, K. Beura, S. P. Sharma, and S. K. Sharma. 2016. Fractions of manganese in soil under long-term experiment and their contribution to manganese availability and uptake by maize-wheat cropping sequence. Communications in Soil Science and Plant Analysis 47 (4):1–17. doi: 10.1080/00103624.2015.1123717.
  • Sharma, S., and S. S. Dhaliwal. 2019. Effect of sewage sludge and rice straw compost on yield, micronutrient availability and soil quality under rice–wheat system. Communications in Soil Science and Plant Analysis 50 (16):1943–54. doi: 10.1080/00103624.2019.1648489.
  • Shuman, L. M. 1985. Fractionation method for soil microelements. Soil Science 140 (1):11–22. doi: 10.1097/00010694-198507000-00003.
  • Shuman, L. M. 1991. Chemical forms of micronutrients in soils. Micronutrients in Agriculture 4:113–44.
  • Shuman, L. M. 2017. Micronutrient fertilizers. In Nutrient use in crop production, 165–95. Boca Raton, FL: CRC Press.
  • Siam, H. S., S. A. Mahmoud, A. S. Taalab, and G. W. Ageeb. 2019. A review of electrochemical changes in submerged soils. Plant Archives 19 (1):1965–73.
  • Singh, K. B., P. R. Gajri, and V. K. Arora. 2001. Modelling the effects of soil and water management practices on the water balance and performance of rice. Agricultural Water Management 49 (2):77–95. doi: 10.1016/S0378-3774(00)00144-X.
  • Soltani, S., M. M. Hanafi, S. A. Wahid, and S. M. S. Kharidah. 2015. Zinc fractionation of tropical paddy soils and their relationships with selected soil properties. Chemical Speciation & Bioavailability 27 (2):53–61. doi: 10.1080/09542299.2015.1023091.
  • Steinmetz, Z., K. G. Kenngott, M. Azeroual, R. B. Schäfer, and G. E. Schaumann. 2017. Fractionation of copper and uranium in organic and conventional vineyard soils and adjacent stream sediments studied by sequential extraction. Journal of Soils and Sediments 17 (4):1092–100. doi: 10.1007/s11368-016-1623-y.
  • Subbiah, B., and G. L. Asija. 1956. Alkaline permanganate method of available nitrogen determination. Current Science 25:259.
  • Tripathi, D. K., S. Singh, S. Singh, S. Mishra, D. K. Chauhan, and N. K. Dubey. 2015. Micronutrients and their diverse role in agricultural crops: Advances and future prospective. Acta Physiologiae Plantarum 37 (7):139. doi: 10.1007/s11738-015-1870-3.
  • Vatta, K., and G. Taneja. 2019. Farmers’ awareness, perceptions and knowledge gaps. Agriculture Innovation Systems in Asia: Towards Inclusive Rural Development, 37.
  • Walkley, A., and I. A. Black. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37 (1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Yang, X. J., Z. Xu, and H. Shen. 2018. Drying–submergence alternation enhanced crystalline ratio and varied surface properties of iron plaque on rice (Oryza sativa) roots. Environmental Science and Pollution Research International 25 (4):3571–87. doi: 10.1007/s11356-017-0509-x.
  • Yeganeh, M., M. Afyuni, A. H. Khoshgoftarmanesh, Y. Rezaeinejad, and R. Schulin. 2010. Transport of zinc, copper, and lead in a sewage sludge amended calcareous soil. Soil Use and Management 26 (2):176–82. doi: 10.1111/j.1475-2743.2010.00270.x.
  • Zahedifar, M. 2017. Sequential extraction of zinc in the soils of different land use types as influenced by wheat straw derived biochar. Journal of Geochemical Exploration 182:22–31. doi: 10.1016/j.gexplo.2017.08.007.
  • Zhang, W., T. Yu, X. Yang, and H. Li. 2020. Speciation, transformation, and accumulation of manure-derived Cu and Zn in the soil–rice system. Soil and Sediment Contamination: An International Journal 29 (1):43–52. doi: 10.1080/15320383.2019.1670135.
  • Zheng, S., and M. Zhang. 2011. Effect of moisture regime on the redistribution of heavy metals in paddy soil. Journal of Environmental Sciences (China) 23 (3):434–43. doi: 10.1016/s1001-0742(10)60428-7.
  • Zhou, G., W. Cao, J. Bai, C. Xu, N. Zeng, S. Gao, R. M. Rees, and F. Dou. 2020. Co-incorporation of rice straw and leguminous green manure can increase soil available nitrogen (N) and reduce carbon and N losses: An incubation study. Pedosphere 30 (5):661–70. doi: 10.1016/s1002-0160(19)60845-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.