91
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Concurrent effect of phosphorus, nanoparticles and phosphorus solubilizing bacteria influences root morphology, soil enzymes and nutrients uptake in upland rice (Oryza sativa L.)

, , , , , & show all
Pages 1596-1612 | Received 25 Jan 2023, Accepted 25 Jan 2024, Published online: 20 Feb 2024

References

  • Ahmed, M., M. J. Patil, F. Natsia, and V. Yadav. 2008. Effect of phosphorus use efficiency in tropical rice. Journal of Microorganism 12 (7):45–7.
  • Akinrinde, E. A., and T. Gaizer. 2006. Differences in the performance and phosphorus-use efficiency of some tropical rice (Oryza sativa L.) varieties. Pakistan Journal of Nutrition 5 (3):206–11. doi: 10.3923/pjn.2006.206.211.
  • Amanullah, Inamullah Jawaher, A., S. E. Mohamed, S. A. Mona, M. I. Asim, and K. Shah. 2020. Phosphorus and zinc fertilization improve productivity and profitability of rice cultivars under rice-wheat system. Agronomy 10 (8):1085.
  • Arora, R. K., M. Iqbal, A. Hamid, K. Iqbal, A. Hussain, and A. Rasool. 2016. Influence of phosphorus and phosphate solubilizing bacteria to physico-chemical soil characteristics of wheat (Triticum aestivum L.). In: Natural Resource Management: Ecological Perspectives (I), edited by Peshin, R., Dhawan, A. K., Bano, F. and Risam, K. S. Proceedings of the Indian Ecological Society International Conference, SKUAST, India, 18-20th February (p. 666).
  • Casida, L. E., JR., D. A. Klein, and T. Santoro. 1964. Soil dehydrogenase activity. Soil Science 98 (6):371–6. doi: 10.1097/00010694-196412000-00004.
  • Chaudhary, I. J., and V. Singh. 2020. Titanium dioxide nanoparticles and its impact on growth, biomass and yield of agricultural crops under environmental stress: A review. Research Journal of Nanoscience and Nanotechnology 10 (1):1–8. doi: 10.3923/rjnn.2020.1.8.
  • Clements, H. F. 1964. Interaction of factors affecting yield. Annual Review of Plant Physiology 15 (1):409–42. doi: 10.1146/annurev.pp.15.060164.002205.
  • Counce, P. A., and B. R. Wells. 1986. Rice Y‐leaf nutrient analyses and midseason, foliar fertilization. Communications in Soil Science and Plant Analysis 17 (10):1071–87. doi: 10.1080/00103628609367775.
  • Da Costa, M. V. J., and P. K. Sharma. 2016. Effect of copperoxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54 (1):110–9. doi: 10.1007/s11099-015-0167-5.
  • Daghan, H. 2018. Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Applied Ecology and Environmental Research 16:6873–83.
  • Dangi, K., and A. K., Verma. 2021. Efficient & eco-friendly smart nano-pesticides: Emerging prospects for agriculture. Materials Today: Proceedings 45: 3819–3824. doi: 10.1016/j.matpr.2021.03.211.
  • Devi, K. N., M. S. Singh, N. G. Singh, and H. S. Athokpam. 2011. Effect of integrated nutrient management on growth and yield of wheat (Triticum aestivumL.). Journal of Crop and Weed 7 (2):23–7.
  • Dubey, K. K., and M. H. Fulekar. 2011. Mycorhizosphere development and management: The role of nutrients, microorganisms and bio-chemical activities. Agriculture and Biology Journal of North America 2 (2):315–24. doi: 10.5251/abjna.2011.2.2.315.324.
  • Eichert, T., A. Kurtz, U. Steiner, and H. E. Goldbach. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum 134 (1):151–60. doi: 10.1111/j.1399-3054.2008.01135.x.
  • Eichert, T., and H. E. Goldbach. 2008. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces- further evidence for a stomatal pathway. Physiologia Plantarum 132 (4):491–502. doi: 10.1111/j.1399-3054.2007.01023.x.
  • Eivazi, F., and M. A. Tabatabai. 1979. Phosphatase in soil. Soil Biology and Biochemistry 9 (3):167–72. doi: 10.1016/0038-0717(77)90070-0.
  • Fageria, N. K., and V. C. Baligar. 2003. Enhancing nitrogen use efficiency in crop plants. Advance Agronomy 88:97–185.
  • Fageria, N. K., R. J. Wright, and V. C. Baligar. 2014. Rice cultivar evaluation for phosphorus use efficiency. Plant and Soil 111 (1):105–9. doi: 10.1007/BF02182043.
  • Fageria, N. K., V. C. Baligar, and C. A. Jones. 2011. Growth and mineral nutrition of field crops, 3rd ed. Boca Raton, FL: CRC Press.
  • Fayez, R., and D. Mahmoud. 2009. Solubilization of inorganic phosphate by microorganisms isolated from forest soils. Soil Biology and Biochemistry 24:389–95.
  • Gaind, S. 2013. Pseudomonas striata for improving phosphorus availability in soil under pearl millet cultivation. Journal of Crop Improvement 27 (3):255–71. doi: 10.1080/15427528.2012.760026.
  • Gomez, K. A., and A. A. Gomez. 1984. Statistical procedures for agricultural research. In An international rice research institute book, 2nd ed. New York: A Wiley-Interscience Publication, John Wiley & Sons.
  • Halli, H. M., S. Angadi, A. Kumar, P. Govindasamy, R. Madar, D. O. El-Ansary, M. A. Rashwan, S. A. M. Abdelmohsen, A. M. M. Abdelbacki, E. A. Mahmoud, et al. 2021. Influence of planting and irrigation levels as physical methods on maize root morphological traits, grain yield and water productivity in semi-arid region. Agronomy 11 (2):294. doi: 10.3390/agronomy11020294.
  • Halli, H. M., S. S. Angadi, and R. H. Patil. 2016. Water and nutrient use efficiency in agriculture and the role of cereals- A review. Journal of Farm Science 29 (3):299–306.
  • Hatti, V., M. Raghavendra, Y. V. Singh, S. K. Sharma, H. M. Halli, and B. R. Goud. 2020. Application of nano technology in crop production to enhance resource use efficiency with special reference to soil and water conservation: A review. Journal of Soil and Water Conservation 19 (4):375–81. doi: 10.5958/2455-7145.2020.00050.8.
  • Ismail, A. M., S. Heuer, J. T. Thomson, and M. Wissuwa. 2007. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology 65 (4):547–70. doi: 10.1007/s11103-007-9215-2.
  • Jackson, M. L. 1973. Soil chemical analysis, 498. New Delhi: Prentice Hall India PVT Ltd.
  • Kohler, J., F. Caravaca, L. Carrasco, and A. Roldán. 2007. Interactions between a plant growth promoting rhizobacterium on AM fungus and a phosphate solubilizing fungus in the rhizosphere of Lactuca sativa. Applied Soil Ecology 35 (3):480–7. doi: 10.1016/j.apsoil.2006.10.006.
  • Lindsay, W., and W. Norvell. 1978. Development of a DTPA soil test zinc, iron manganese and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Lynch, J. P. 2007. Roots of the second green revolution. Australian Journal of Botany 55 (5):493–512. doi: 10.1071/BT06118.
  • Mahua, B., K. R. Raj, and M. Debtanu. 2010. Root characteristics of maize as influenced by various phosphatic chemical fertilizers and bio-fertilizers. Archives of Agronomy and Soil Science 56 (6):681–95. doi: 10.1080/03650340903207915.
  • Mankad, M., R. S. Fougat, A. Patel, P. Mankad, G. Patil, and N. N. Subhash. 2017. Physiological and biochemical effects of zinc oxide nanoparticles on rice (Oryza sativa L.). Advances in Bioresearch 8 (6):208–17.
  • Mitra, D., P. Adhikari, R. Djebaili, P. Thathola, K. Joshi, M. Pellegrini, N. O. Adeyemi, B. Khoshru, K. Kaur, A. Priyadarshini, et al. 2023. Biosynthesis and characterization of nanoparticles, its advantages, various aspects and risk assessment to maintain the sustainable agriculture: Emerging technology in modern era science. Plant Physiology and Biochemistry: PPB 196:103–20. doi: 10.1016/j.plaphy.2023.01.017.
  • Moghaddasi, S., A. Fotovat, A. H. Khoshgoftarmanesh, F. Karimzadeh, H. R. Khazaei, and R. Khorassani. 2017. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicology and Environmental Safety 144:543–51. doi: 10.1016/j.ecoenv.2017.06.074.
  • Pérez-de-Luque, A. 2017. Interaction of nanomaterial’s with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science 5:12. doi: 10.3389/fenvs.2017.00012.
  • Piper, C. S. 1966. Soil and plant analysis, 14–32. New York, NY: University of Adelaide, Australia Academic Press.
  • Prasad, T. N. K. V., P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. R. Reddy, T. S. Sreeprasad, P. R. Sajanlal, and T. Pradeep. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of Peanut. Journal of Plant Nutrition 35 (6):905–27. doi: 10.1080/01904167.2012.663443.
  • Qurban, A. P., O. Radziah, A. R. Zaharah, and R. Modh. 2011. Effect of phosphatic fertilizer on root colonization of aerobic rice by phosphate solubilizing bacteria. Ipcbee 9 (1):89–93.
  • Raliya, R., J. C., Tarafdar, H., Mahawar, R., Kumar, P., Gupta, T., Mathur, R. K., Kaul, A., Kalia, R., Gautam, S. K., Singh, & H. S., Gehlot. 2014. ZnO nanoparticles induced exopolysaccharide production by B. subtilis strain JCT1 for arid soil applications. International Journal of Biological macromolecules 65:362–368. doi: 10.1016/j.ijbiomac.2014.01.060.
  • Rameshraddy, Pavithra, G. J., B. H. Rajashekar Reddy, M. Salimath, K. N. Geetha, and A. G. Shankar. 2017. Zinc oxide nano particles increases Zn uptake, translocation in rice with positive effect on growth, yield and moisture stress tolerance. Indian Journal of Plant Physiology 22:287–294.
  • Rameshraddy, M., Salimath, K. N. Geetha, and A. G. Shankar. 2018. ZnO nanoparticle improves maize growth, yield and seed zinc under high soil pH condition. International Journal of Current Microbiology and Applied Sciences 7 (12):1593–1601. doi: 10.20546/ijcmas.2018.712.187.
  • Rehman, H. U., T. Aziz, M. Farooq, A. Wakeel, and Z. Rengel. 2012. Zinc nutrition in rice production systems: A review. Plant and Soil 361 (1-2):203–26. doi: 10.1007/s11104-012-1346-9.
  • Rizwan, M., M. S. Ali, M. F. Qayyum, Y. S. Adrees, M. Ok, M. Ibrahim, M. Z. Rehman, M. Farid, and F. Abbas. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. Journal of Hazardous Materials 322 (Pt A):2–16. doi: 10.1016/j.jhazmat.2016.05.061.
  • Samart, S., N. Phakamas, and S. Chutipaijit. 2015. Effect of nanoparticles on the relationship between crop growth rate and yield of chainat-1 rice (Oryza sativa L.). 2nd International Symposium on Agricultural Technology (ISAT).
  • Subbiah, B. V., and G. L. Asija. 1956. A rapid procedure for the estimation of available nitrogen in soils. Current Science 25:259–60.
  • Tarafdar, J. C., R. Raliya, H. Mahawar, and I. Rathore. 2014. Development of zinc nano fertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research 3 (3):257–62. doi: 10.1007/s40003-014-0113-y.
  • Tarafdar, J. C., Y. Xiang, W. N. Wang, Q. Dong, and P. Biswas. 2012. Standardization of size, shape and concentration of nanoparticle for plant application. Applied Biological Research 14:138–44.
  • Trivedi, P., B. Kumar, A. Pandey, and L. M. S. Palni. 2007. Growth promotion of rice by phosphate solubilizing bioinoculants in a Himalayan location. In Proceedings books of first international meeting on microbial phosphate solubilization, ed. E., Velazquez and C. Rodriguez-Barrueco, 291–9. Dordrecht: Kluwer.
  • Van Noordwijk, M. 1993. Roots length, biomass, production and mortality. Methods for root research. In Trop.Soil.Boil. fert., A handbook of methods, ed. J. M. Anderson and J. S. I. Ingram, 132–44. Wallingford: CAB International.
  • Watson, J. L., T. Fang, C. O. Dimkpa, D. W. Britt, J. E. McLean, A. Jacobson, and A. J. Anderson. 2015. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine 28 (1):101–12. doi: 10.1007/s10534-014-9806-8.
  • Zahra, Z., N. Waseem, R. Zahra, H. Lee, M. A. Badshah, A. Mehmood, H. K. Choi, and M. Arshad. 2017. Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. Journal of Agricultural and Food Chemistry 65 (28):5598–606. doi: 10.1021/acs.jafc.7b01843.
  • Zheng, L., F. Hong, S. Lu, and C. Liu. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biological Trace Element Research 104 (1):83–92. doi: 10.1385/BTER:104:1:083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.