96
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Impact of elevated CO2 concentration on carbon and nitrogen metabolism of irrigated rice plants

ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1613-1629 | Received 31 Aug 2023, Accepted 25 Jan 2024, Published online: 19 Feb 2024

References

  • Ainsworth, E. A., and S. P. Long. 2005. What have we learned from 15 years of free‐air CO2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties, and plant production to rising CO2. The New Phytologist 165 (2):351–71. doi: 10.1111/j.1469-8137.2004.01224.x.
  • Ainsworth, E. A., and A. Rogers. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell & Environment 30 (3):258–70. doi: 10.1111/j.1365-3040.2007.01641.x.
  • Baker, N. R., and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. Journal of Experimental Botany 55 (403):1607–21. doi: 10.1093/jxb/erh196.
  • Baslam, M., T. Mitsui, K. Sueyoshi, and T. Ohyama. 2021. Recent advances in carbon and nitrogen metabolism in C3 plants. International Journal of Molecular Sciences 22 (1):318. doi: 10.3390/ijms22010318.
  • Begcy, K., and T. Dresselhaus. 2018. Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reproduction 31 (4):343–55. doi: 10.1007/s00497-018-0343-4.
  • Bhering, L. L. 2017. Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology 17 (2):187–90. doi: 10.1590/1984-70332017v17n2s29.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1–2):248–54. doi: 10.1006/abio.1976.9999.
  • Busch, F. A., and R. F. Sage. 2017. The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. The New Phytologist 213 (3):1036–51. doi: 10.1111/nph.14258.
  • Campbell, W. H. 1999. Nitrate reductase structure function and regulation on bridging to gap between biochemistry and physiology. Annual Review of Plant Physiology and Plant Molecular Biology 50 (1):277–303. doi: 10.1146/annurev.arplant.50.1.277.
  • Campestrini, R., R. G. Prates, S. A. d Sousa, T. C. d Oliveira, J. Silva, and R. R. Fidelis. 2014. Eficiência de genótipos de arroz no uso de nitrogênio em solos de terras altas. Pesquisa Agropecuária Pernambucana 19 (1):25–32. doi: 10.12661/pap.2014.005.
  • Cataldo, D. A., M. Maroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis 6 (1):71–80. doi: 10.1080/00103627509366547.
  • Chaturvedi, A. K., R. N. Bahuguna, M. Pal, D. Shah, S. Maurya, and K. S. Jagadish. 2017. Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions. Field Crops Research 206:149–57. doi: 10.1016/j.fcr.2017.02.018.
  • Chen, C. T., and T. Setter. 2012. Response of potato dry matter assimilation and partitioning to elevated CO2 at various stages of tuber initiation and growth. Environmental and Experimental Botany 80:27–34. doi: 10.1016/j.envexpbot.2012.02.003.
  • Coffel, E. D., R. M. Horton, and A. De Sherbinin. 2018. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environmental Research Letters: ERL [Web Site] 13 (1):014001. doi: 10.1088/1748-9326/aaa00e.
  • CONAB. 2021. Accessed on 10th December 2021. http://www.conab.gov.br.
  • Cullimore, J. V., M. Lara, P. J. Lea, and B. J. Miflin. 1983. Purification and properties of two forms of glutamine synthetase from the plant fraction of Phaseolus root nodules. Planta 157 (3):245–53. doi: 10.1007/BF00405189.
  • Erice, G., I. Aranjuelo, J. J. Irigoyen, and M. Sánchez‐Día. 2007. Effect of elevated CO2, temperature and limited water supply on antioxidant status during regrowth of nodulated alfalfa. Physiologia Plantarum 130 (1):33–45. doi: 10.1111/j.1399-3054.2007.00889.x.
  • Feng, Z., T. Rütting, H. Pleijel, G. Wallin, P. B. Reich, C. I. Kammann, P. C. D. Newton, K. Kobayashi, Y. Luo, and J. Uddling. 2015. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Global Change Biology 21 (8):3152–68. doi: 10.1111/gcb.12938.
  • Foyer, C. H., and G. Noctor. 2020. Redox homeostasis and signaling in a higher-CO2 world. Annual Review of Plant Biology 71 (1):157–82. doi: 10.1146/annurev-arplant-050718-095955.
  • Gago, J., D. M. Daloso, M. Carriquí, M. Nadal, M. Morales, W. L. Araújo, A. Nunes-Nesi, and J. Flexas. 2020. Mesophyll conductance: The leaf corridors for photosynthesis. Biochemical Society Transactions 48 (2):429–39. doi: 10.1042/BST20190312.
  • Giri, A., B. Armstrong, and C. B. Rajashekar. 2016. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. American Journal of Plant Sciences 07 (01):246–58. doi: 10.4236/ajps.2016.71024.
  • Graham, D., and J. Smydzuk. 1965. Use of anthrone in the quantitative determination of hexose phosphates. Analytical Biochemistry 11 (2):246–55. doi: 10.1016/0003-2697(65)90012-6.
  • Handel, V. 1968. Direct microdetermination sucrose. Anaal Biochem 22:280–3.
  • Heidari, B., P. Matre, D. Nemie-Feyissa, C. Meyer, O. A. Rognli, S. G. Møller, and C. Lillo. 2011. Protein phosphatase 2A B55 and A regulatory subunits interact with nitrate reductase and are essential for nitrate reductase activation. Plant Physiology 156 (1):165–72. doi: 10.1104/pp.111.172734.
  • Hofmann, L. C., S. Straub, and K. (. Bischof. 2013. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis. Journal of Experimental Botany 64 (4):899–908. doi: 10.1093/jxb/ers369.
  • IPCC. 2017. Accessed: 09th May. 2019. https://www.ipcc.ch/publications.
  • Klotz, K. L., F. L. Finger, and W. L. Shelver. 2003. Characterization of two sucrose synthase isoforms in sugarbeet root. Plant Physiology and Biochemistry. 41 (2):107–15. doi: 10.1016/S0981-9428(02)00024-4.
  • Kobayasi, K., K. Yamane, and T. Imaki. 2021. Effects of non-structural carbohydrates on spikelet differentiation in rice. Plant Production Science. 4 (1):9–14. doi: 10.1626/pps.4.9.
  • Lavergne, A., H. Graven, M. G. De Kauwe, T. F. Keenan, B. E. Medlyn, and I. C. Prentice. 2019. Observed and modelled historical trends in the water‐use efficiency of plants and ecosystems. Global Change Biology 25 (7):2242–57. doi: 10.1111/gcb.14634.
  • Le Quéré, C., R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, G. P. Peters, A. C. Manning, T. A. Boden, P. P. Tans, R. A. Houghton, et al. 2016. Global carbon budget. Earth System Science Data 8 (2):605–49. doi: 10.5194/essd-8-605-2016.
  • Li, Y., N. He, J. Hou, L. Xu, C. Liu, J. Zhang, and X. Wu. 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution 6:64.
  • Lobos, G. A., J. B. Retamales, J. F. Hancock, J. A. Flore, N. Cobo, and A. del Pozo. 2012. Spectral irradiance, gas exchange characteristics and leaf traits of Vaccinium corymbosum L. ‘Elliott’grown under photo-selective nets. Environmental and Experimental Botany 75:142–9. doi: 10.1016/j.envexpbot.2011.09.006.
  • Luo, Y. I. Q. I., B. O. Su, W. S. Currie, J. S. Dukes, A. Finzi, U. E. L. I. Hartwig, B. Hungate, R. E. Mc Murtrie, R. A. M. Oren, W. J. Parton, et al. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54 (8):731–9. doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2.
  • Lv, C., Y. Huang, W. Sun, L. Yu, and J. Zhu. 2020. Response of rice yield and yield components to elevated [CO2]: A synthesis of updated data from FACE experiments. European Journal of Agronomy 112:125961. doi: 10.1016/j.eja.2019.125961.
  • Matt, P., M. Geiger, P. Walch‐Liu, C. Engels, A. Krapp, and M. Stitt. 2001. Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant, Cell & Environment 24 (11):1119–37. doi: 10.1046/j.1365-3040.2001.00771.x.
  • Mittler, R., and E. Blumwald. 2010. Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology 61 (1):443–62. doi: 10.1146/annurev-arplant-042809-112116.
  • Niu, Y., R. Chai, H. Dong, H. Wang, C. Tang, and Y. Zhang. 2013. Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. Journal of Experimental Botany 64 (1):355–67. doi: 10.1093/jxb/ers341.
  • Nyomora, A. M. S., R. N. Sah, P. H. Brown, and R. O. Miller. 1997. Boron determination in biological materials by inductively coupled plasma atomic emission and mass spectrometry: Effects of sample dissolution methods. Fresenius’ Journal of Analytical Chemistry 357 (8):1185–91. doi: 10.1007/s002160050328.
  • Prasad, P. V., P. Q. Craufurd, R. J. Summerfield, and T. R. Wheeler. 2000. Effects of short episodes of heat stress on flower production and fruit‐set of groundnut (Arachis hypogaea L.). Journal of Experimental Botany 51 (345):777–84. doi: 10.1093/jexbot/51.345.777.
  • Queiroz, C. G., J. D. Alves, A. B. Rena, and A. T. Cordeiro. 1991. Efeito do cloranfenicol, n-propanol, pH e temperatura sobre a atividade in vivo da redutase do nitrato em cafeeiros jovens. Rbb 14:73–7.
  • Rabier, J., I. Laffont-Schwob, A. Pricop, A. Ellili, G. D’Enjoy-Weinkammerer, M.-D. Salducci, P. Prudent, B. Lotmani, A. Tonetto, and V. Masotti. 2014. Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean spray zone. Water, Air, & Soil Pollution 225 (7):1–16. doi: 10.1007/s11270-014-1993-y.
  • Raessler, M., B. Wissuwa, A. Breul, W. Unger, and T. Grimm. 2010. Chromatographic analysis of major non-structural carbohydrates in several wood species – an analytical approach for higher accuracy of data. Analytical Methods 2 (5):532–8. doi: 10.1039/b9ay00193j.
  • Robredo, A., U. Pérez-López, M. Lacuesta, A. Mena-Petite, and A. Muñoz-Rueda. 2010. Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biologia Plantarum 54 (2):285–92. doi: 10.1007/s10535-010-0050-y.
  • Robredo, A., U. Pérez-López, J. Miranda-Apodaca, M. Lacuesta, A. Mena-Petite, and A. Muñoz-Rueda. 2011. Elevated CO2 reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery. Eeb 71:399–408.
  • Searchinger, T., R. Waite, C. Hanson, J. Ranganathan, P. Dumas, E. Matthews, and C. Klirs. 2019. Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Final Report.
  • Shimono, H., K. Suzuki, K. Aoki, T. Hasegawa, and M. Okada. 2010. Effect of panicle removal on photosynthetic acclimation under elevated CO2 in rice. Photosynthetica 48 (4):530–6. doi: 10.1007/s11099-010-0070-z.
  • SOSBAI. 2018. Accessed on 29th April 2021. http://www.irga.rs.gov.br/lista/552/outras-publicacoes.
  • Souza, A. H. C., M. Z. Lorenzoni, J. M. R. Nascimento, C. C. Seron, A. B. A. Andrean, and R. Rezende. 2018. Efeito do nitrogênio na eficiência instantânea de carboxilação no cultivo da berinjela. Anais do Encontro Internacional de Produção Científica, 2017, Resumos… Campinas, GALOÁ.
  • Stein, O., and D. Granot. 2019. An overview of sucrose synthases in plants. Frontiers in Plant Science 10:95. doi: 10.3389/fpls.2019.00095.
  • Taub, D. R., and X. Wang. 2008. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. Journal of Integrative Plant Biology 50 (11):1365–74. doi: 10.1111/j.1744-7909.2008.00754.x.
  • Tedesco, M. J., C. Gianell, C. A. Bissani, H. Bohnen, and S. J. Volkweiss. 1995. Análise de solo, plantas e outros materiais. Porto Alegre: URGS.
  • Thompson, M., D. Gamage, N. Hirotsu, A. Martin, and S. Seneweera. 2017. Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk. Frontiers in Physiology 8:578. doi: 10.3389/fphys.2017.00578.
  • USDA. Accessed on 18th January 2020. http://www.usda.gov/wps/portal/usda/usdahome?navid=DATA_STATISTICS.
  • Walter, L. C., H. T. Rosa, and N. A. Streck. 2015. Mecanismos de aclimatação das plantas à elevada concentração de CO2. Ciência Rural 45 (9):1564–71. doi: 10.1590/0103-8478cr20140527.
  • Wang, W., C. Cai, J. He, J. Gu, G. Zhu, W. Zhang, J. Zhu, and G. Liu. 2020a. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research 248:107605. doi: 10.1016/j.fcr.2019.107605.
  • Wang, B., C. Guo, Y. Wan, J. Li, X. Ju, W. Cai, S. You, X. Qin, A. Wilkes, and Y. Li. 2020b. Air warming and CO2 enrichment increase N use efficiency and decrease N surplus in a Chinese double rice cropping system. The Science of the Total Environment 706:136063. doi: 10.1016/j.scitotenv.2019.136063.
  • Wang, J., C. Wan, N. Chen, Z. Xiong, D. Wolfe, and J. Zou. 2015a. Response of rice production to elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis. Climatic Change 130 (4):529–43. doi: 10.1007/s10584-015-1374-6.
  • Wang, M., B. Xie, Y. Fu, C. Dong, L. Hui, L. Guanghui, and H. Liu. 2015b. Effects of different elevated CO2 concentrations on chlorophyll contents, gas exchange, water use efficiency and PSII activity on C3 and C4 cereal crops in a closed artificial ecosystem. Photosynthesis Research 126 (2–3):351–62. doi: 10.1007/s11120-015-0134-9.
  • Wei, L., W. Wang, J. Zhu, Z. Wang, J. Wang, C. Li, Q. Zeng, and L. H. Ziska. 2021. Responses of rice qualitative characteristics to elevated carbon dioxide and higher temperature: Implications for global nutrition. Journal of the Science of Food and Agriculture 101 (9):3854–61. doi: 10.1002/jsfa.11021.
  • Xu, Z., Y. Jiang, and G. Zhou. 2015. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science 6:701. doi: 10.3389/fpls.2015.00701.
  • Yemm, E. W., E. C. Cocking, and R. E. Ricketts. 1955. Estimation of amino acids by ninhidrin. The Analyst 80 (948):209–13. doi: 10.1039/an9558000209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.