49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Valorization of organic residues for lettuce production minimizes nitrogen loss in soil in comparison to mineral fertilization

&
Pages 1680-1696 | Received 21 Feb 2023, Accepted 06 Feb 2024, Published online: 26 Feb 2024

References

  • Alburquerque, J. A. C., A. De la Fuente, L. Ferrer-Costa, J. Carrasco, M. Cegarra, M. Abad, and M. P. Bernal. 2012. Assessement of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass and Bioenergy 40:181–9. doi:10.1016/j.biombioe.2012.02.018.
  • Alexander, P. D., B. J. Alloway, and A. M. Dourado. 2006. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution (Barking, Essex: 1987) 144 (3):736–45. doi:10.1016/j.envpol.2006.03.001.
  • [AOAC] Association Official Analytical Chemists. 2010. Official methods of analysis of Association of Official Analytical Chemists. 18th ed. Washington, DC: AOAC.
  • Alves, L. D., C. E. C. Caitano, S. Ferrari, W. G. Vieira, R. Heinrichs, R., B. R. D. Moreira, A. Pardo-Giménez, and D. C. Zied. 2022. Applied of spent sun mushroom substrate in substitution of synthetic fertilizers at maize topdressing. Agronomy 12 (11):2884. doi:10.3390/agronomy12112884.
  • Ayers, R. S., and D. W. Westcot. 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper 29 Rev. 1. Rome: FAO.
  • Beckers, S. J., I. A. Dallo, I. del Campo, C. Rosenauer, K. Klein, and F. R. Wurm. 2019. From compost to colloids-valorization of spent mushroom substrate. ACS Sustainable Chemistry & Engineering 7 (7):6991–8. doi:10.1021/acssuschemeng.8b06710.
  • Becher, M., M. Banach-Szott, and A. Godlewska. 2021. Organic matter properties of spent button mushroom substrate in the context of soil organic matter reproduction. Agronomy 11 (2):204. doi:10.3390/agronomy11020204.
  • Bower, C. A., R. F. Reitemeier, and M. Fireman. 1952. Exchange cation analysis of saline and alkali soils. Soil Science 73 (4):251–62. doi:10.1097/00010694-195204000-00001.
  • Bojilov, D., S. Dagnon, K. Kostadinov, and S. Filipov. 2020. Polyphenol composition of lettuce cultivars affected by mineral and bio-organic fertilisation. Czech Journal of Food Sciences 38 (6):359–66. doi:10.17221/97/2020-CJFS.
  • Ciavatta, C., M. Govi, A. Simoni, and P. Sequi. 1993. Evaluation of heavy metals during stabilization of organic matte in compost produced with municipal solid-wastes. Bioresource Technology 43 (2):147–53. doi:10.1016/0960-8524(93)90174-A.
  • Coelho, J. J., M. L. Prieto, S. Dowling, A. Hennessy, I. Casey, T. Woodcock, and N. Kennedy. 2018. Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Management (New York, N.Y.) 78:8–15. doi:10.1016/j.wasman.2018.05.017.
  • Corden, C., K. Bougas, E. Cunningham, D. Tyrer, J. Kreißig, E. Zetti, E. Gamero, and R. Wildey. 2019. Digestate and compost as fertilisers: Risk assessment and risk management options. European Comisssion Final Report. Accessed January 7, 2024. https://etendering.ted.europa.eu/document/document-file-download.html?docFileId=65687.
  • Council Directive 91/676/EEC of 12 December 1991 concerning the protection waters against pollution caused by nitrates from agricultural sources. Official Journal of the European Communities. Official Journal L 375, 31/12/1991 P. 0001 – 0008. Accessed January 7, 2024. https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=celex%3A31991L0676.
  • European Commission. 2022. Food security: The Commission addresses the availability and affordability of fertilizers in the EU and globally. Accessed January 7, 2024. https://ec.europa.eu/commission/presscorner/detail/en/IP_22_6564 (accessed Jan. 7, 2024).
  • Faran, M., M. Nadeem, C. F. Manful, L. Galagedara, R. H. Thomas, and M. Cheema. 2023. Agronomic perfomance and phytochemical profile of lettuce grown in anaerobic dairy digestate. Agronomy 13 (1):182. doi:10.3390/agronomy13010182.
  • Gil-Díaz, M., L. T. Ortiz, G. Costa, J. Alonso, M. L. Rodríguez-Membibre, S. Sánchez-Fortún, A. Pérez-Sanz, M. Martín, and M. C. Lobo. 2014. Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): Physicochemical and toxicological analysis of leaches. Water, Air, & Soil Pollution 225 (6):1990. doi:10.1007/s11270-014-1990-1.
  • Goulding, K., S. Jarvis, and A. Whitmore. 2008. Optimizing nutrient management for farm systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 363 (1491):667–80. doi:10.1098/rstb.2007.2177.
  • Bot, A., and J. Benites. 2005. The importance of soil organic matter key to drought-resistant soil and sustained food production. FAO Soils Bulletin 80. Rome, Italy: Food and Agricultural Organization of the United Nations.
  • Folin, O., and V. Ciocalteu. 1924. On tyrosine and tryptophan determination in proteins. Journal of Biological Chemistry 24:627–50.
  • Follett, J. R., R. Follett, and W. C. Herz. 2010. Environmental and human impacts of reactive nitrogen. In Advances in Nitrogen Management for Water Quality, 1–37, eds. J. A. Delgado and R. F. Follett. Ankeny, IA: Soil and Water Conservation Society.
  • Gitelson, A. A., C. Buschmann, and H. K. Lichtenthaler. 1999. The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment 69 (3):296–302. doi:10.1016/S0034-4257(99)00023-1.
  • Hackett, R. 2015. Spent mushroom compost as a nitrogen source for spring barley. Nutrient Cycling in Agroecosystems 102 (2):253–63. doi:10.1007/s10705-015-9696-3.
  • Kang, J., A. Amoozegar, D. Hesterberg, and D. L. Osmond. 2011. Phosphorus leaching in a sandy soil as affected by organic and inorganic fertilizer sources. Geoderma 161 (3–4):194–201. doi:10.1016/j.geoderma.2010.12.019.
  • Lee, M. E., M. W. Steiman, S. K. St, and A. Angelo. 2020. Biodigestate as a renewable fertilizer: Effects of digestate application on crop growth and nutrient composition. Renewable Agriculture and Food Systems 36 (2):173–81. doi:10.1017/S1742170520000186.
  • Makadi, M., A. Tomócsik, V. Orosz, J. Lengyel, and A. Marton. 2006. Agricultural utilization of a liquid manure originated from a biogas plant. In Biological waste management, from local to global, ed. E. Kraft, W. Bidlingmaier, M. De Bertoldi, L. F. Díaz, and J. Barth, Proceedings of the ORBIT International Conference held during 13–15 September, at Welmar, Germany, 635–41. Weimar, Germany: Lombego System & Goldwiege.
  • MAPA. 1994. Métodos oficiales de análisis. Tomo III: Métodos oficiales de análisis de suelos y aguas para el riego, 205–85. Madrid: Ministerio de Agricultura, Pesca y Alimentación. Servicio de Publicaciones. (in Spanish)
  • Maynard, D. C., Y. P. Kalra, and J. A. Crumbaugh. 2006. Nitrate and exchange ammonium nitrogen. In Soil Sampling and Methods of Analysis, ed. M. R. Carter, and E. Gregorich, 71–80. Boca Raton, FL: Canadian Society of Soil Science, CRC Press Taylor & Francis Group NW.
  • Medina, E., C. Paredes, M. A. Bustamante, R. Moral, and J. Moreno-Caselles. 2012. Relations between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 173–174:152–61. doi:10.1016/j.geoderma.2011.12.011.
  • Mikula, K., K. Trzaska, D. Skrzypczak, G. Izydorczyk, M. Mironiuk, F. Gil, M. Samoraj, A. Witek-Krowiak, and K. Chojnacka. 2023. Efficient anaerobic digestate valorization: Nutrient recovery strategy for enhancing soil fertility in arid agricultual regions. Journal of Environmental Chemical Engineering 11 (5):110522. doi:10.1016/j.jece.2023.110522.
  • Mohd Hanafi, F. H., S. Rezania, S. Mat Taib, M. F. Md Din, M. Yamauchi, M. Sakamoto, H. Hara, J. Park, and S. S. Ebrahimi. 2018. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. Journal of Material Cycles and Waste Management 20 (3):1383–96. doi:10.1007/s10163-018-0739-0.
  • Möller, K., and T. Müller. 2012. Effect of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences 12 (3):242–57. doi:10.1002/elsc.201100085.
  • Montemurro, F. 2010. Are organic N fertilizing strategies able to improve lettuce yield, use of nitrogen and N status? Journal of Plant Nutrition 33 (13):1980–97. doi:10.1080/01904167.2010.512056.
  • Neves, L. S., P. R. Ernani, and M. A. Simonet. 2009. Potassium movement in soils as related to potassium chloride application. Revista Brasileira de Ciência do Solo 33 (1):25–32. doi:10.1590/S0100-06832009000100003.
  • Nicoletto, C., S. Santagata, G. Zanin, and P. Sambo. 2014. Effect of the anaerobic digestion residues use on lettuce yield and quality. Scientia Horticulturae 180:207–13. doi:10.1016/j.scienta.2014.10.028.
  • Nkoa, R. 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development 34 (2):473–92. doi:10.1007/s13593-013-0196-z.
  • Netto, A. T., E. Campostrini, J. Gonçalves de Oliveira, and R. E. Bressan-Smith. 2005. Photosynthetic pigments, nitrogen, chlorophyll fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae 104 (2):199–209. doi:10.1016/j.scienta.2004.08.013.
  • Peters, J., S. Combs, B. Hoskins, J. Jarman, J. Kovar, M. Watson, A. Wolf, and N. Wolf. 2003. Recommended methods of manure analysis (A3769). University of Wisconsin-Extension. 58 p. Accessed January 7, 2024. https://learningstore.extension.wisc.edu/products/recommended-methods-of-manure-analysis-p106
  • Pranckietienė, I., K. Navickas, K. Venslauskas, D. Jodaugienė, E. Buivydas, B. Žalys, and I. Vagusevičienė. 2023. The effect of digestate from liquid cow manure on spring wheat chlorophyll concenter, soil properties and risk leaching. Agronomy 13 (3):626. doi:10.3390/agronomy13030626.
  • Rhoades, J. D., A. Kandiah, and A. M. Mashali. 1992. Use of saline waters for crop production (FAO Irrigation and Drainage Paper 48). Rome: FAO.
  • Rosolem, C. A., F. P. dos Santos, J. J. Foloni, and J. C. Calonego. 2006. Soil potassium as affected by fertilization over the millet straw and simulated rain. Pesquisa Agropecuária Brasileira 41 (6):1033–40. doi:10.1590/S0100-204X2006000600020.
  • Sogn, T. A., I. Dragicevic, R. Linjordet, T. Krogstad, V. G. H. Eijsink, and S. Eich-Greatorex. 2018. Recycling of biogas digestate in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture 7 (1):49–58. doi:10.1007/s40093-017-0188-0.
  • Srivastava, R. K., R. K. Panda, A. Chakraborty, and D. Halder. 2020. Evaluation of nitrate leaching in lateritic soil under saturated or unsaturated conditions in soil columns. Communications in Soil Science and Plant Analysis 51 (4):541–53. doi:10.1080/00103624.2020.1718686.
  • Tambone, F., and F. Adani. 2017. Nitrogen mineralization from digestate in comparison to sewage, compost and urea in a laboratory incubated soil experiment. Journal of Plant Nutrition and Soil Science 180 (3):355–65. doi:10.1002/jpln.201600241.
  • Tuhy, L., M. Samoraj, Z. Witkowska, R. Wilk, and K. Chojnacka. 2015. Using spent mushroom as the base for organic-mineral micronutrient fertilizer-field test on maize. BioResources 10 (3):5709–19. doi:10.15376/biores.10.3.5709-5719.
  • UNE-EN ISO 13395. 1997. Water quality of determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection. Madrid, Spain: The Spanish Association for Standardization, UNE.
  • USEPA. 2007. Method 3051A. Acid digestion of sediments, sludges, soils and soils. Washington: US Gov. Print Office.
  • Yang, Y., Z. He, P. J. Stoffella, X. Yang, D. A. Graetz, and D. Morris. 2008. Leaching behavior of phosphorus in sandy soil amended with organic material. Soil Science 173 (4):257–66. doi:10.1097/SS.0b013e31816d1edf.
  • Yagüe, M. R., and M. C. Lobo. 2021a. Reuse of the spent mushroom substrate in a vegetable seedbed. ITEA-Información Técnica Económica Agraria 117 (4):347–59. doi:10.12706/itea.2021.004.
  • Yagüe, M. R., and M. C. Lobo. 2021b. Comparison of laboratory methodologies to determine soil nitrogen mineralization from organic residues. BioResources 16 (4):8038–48. doi:10.15376/biores.16.4.8038-8048.
  • Zarabi, M., and M. Jalali. 2012. Leaching of nitrogen and base cations from calcareous soil amended with organic residues. Environmental Technology 33 (13–15):1577–88. doi:10.1080/09593330.2011.638675.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.